A Multiobjective Optimization Approach to Pulmonary Rehabilitation Effectiveness in COPD

  • Jorge Cabral CIDMA
  • Vera Afreixo Center for Research & Development in Mathematics and Applications (CIDMA), University of Aveiro, Aveiro, Portugal
  • Cristiana J Silva Center for Research & Development in Mathematics and Applications (CIDMA), University of Aveiro, Aveiro, Portugal
  • Ana Tavares Center for Research & Development in Mathematics and Applications (CIDMA), University of Aveiro, Aveiro, Portugal
  • Alda Marques Respiratory Research and Rehabilitation Laboratory (Lab3R), School of Health Sciences, University of Aveiro (ESSUA), Aveiro, Portugal
Keywords: COPD, mMRC, multiobjective optimization, R Shiny, NSGA-II, pulmonary rehabilitation

Abstract

Chronic obstructive pulmonary disease (COPD) is a common disease that accounts for a significant individual and societal burden. Pulmonary rehabilitation (PR) is a key management strategy but it is highly inaccessible, making prioritisation highly needed. This study aimed to determine and optimize predictive models of PR outcomes and build a tool to help healthcare professionals in their clinical decision-making about PR prioritisation. Data from patients who performed a 12-week community-based PR programme were analysed. Exercise capacity with the six-minutes walk test distance (6MWD), isometric quadriceps muscle strength with the handheld dynamometry (QMS) and dyspnoea with the modified Medical Research Council dyspnoea scale (mMRC) were assessed before and after PR. Multiple linear regression models were determined based on the Akaike information criteria and a cross-validation method. The resultant multiobjective problem was solved using the Nondominated Sorting Genetic Algorithm-II. R Shiny package was used to create a web-based user interface. Data from 95 patients with COPD (median age of 69 years, 19 female and generally overweight), resulted in linear predictive models for the post-pre difference of the 6MWD, QMS and mMRC with cross-validation R2 of 0.49, 0.53 and 0.51, respectively. 6MWD and mMRC were common statistically significant predictors. Pareto front patients were obese ex-smoker women that do not do long-term oxygen therapy and that performed PR. The distance to the Pareto front along with the estimates given by our models are easily obtained using the designed R Shiny interface and may help healthcare professionals decide on the prioritisation to PR programmes.

References

GOLD. (2021). Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Lung Disease: the GOLD science committee report 2021.

RABE, K. F. AND WATZ, H. (2017). Chronic obstructive pulmonary disease. Lancet 389(10082),1931-1940. doi: 10.1016/S0140-6736(17)31222-9.

MATHERS, C. D. AND LONCAR, D. (2006). Projections of global mortality and burden of disease from 2002 to 2030. PLoS Medicine 3, 2011–2030. doi:10.1371/journal.pmed.0030442.

VOS, T. and others. (2020). Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet 396(10258), 1204-1222. doi:10.1016/S0140-6736(20)30925-9.

WORLD HEALTH ORGANIZATION. (2008). The global burden of disease: 2004 update. WHO Library Cataloguing-Publication Data.

SPRUIT, M. A., SINGH, S. J., GARVEY, C. and others. (2013). An official American Thoracic Society/European Respiratory Society statement: key concepts and advances in pulmonary rehabilitation. American journal of respiratory and critical care medicine 188(8), e13-e64. doi:10.1164/rccm.201309-1634ST.

SPRUIT, M. A. AND WOUTERS, E. F. (2019). Organizational aspects of pulmonary rehabilitation in chronic respiratory diseases. Respirology 24(9), 838-843. doi:10.1111/resp.13512.

BOLTON, C.E., BEVAN-SMITH, E. F., BLAKEY, J. D. and others. (2013). British Thoracic Society guideline on pulmonary rehabilitation in adults: accredited by NICE. Thorax 68, ii1-ii30. doi:10.1136/thoraxjnl-2013-203808.

MACHADO, A., MARQUES, A. AND BURTIN, C. (2021). Extra-pulmonary manifestations of COPD and the role of pulmonary rehabilitation: a symptom-centered approach. Expert Review of Respiratory Medicine 15:1, 131-142. doi:10.1080/17476348.2021.1854737.

ROCHESTER, C. L., VOGIATZIS, I., HOLLAND, A.E. and others. (2015). An Official American Thoracic Society/European Respiratory Society Policy Statement: Enhancing Implementation, Use, and Delivery of Pulmonary Rehabilitation. Am J Respir Crit Care Med 192, 1373-1386. doi:10.1164/rccm.201510-1966ST.

WOUTERS, E. F. M., POSTHUMA, R., KOOPMAN, M., LIU, W. Y., SILLEN, M. J., HAJIAN, B., SASTRY, M., SPRUIT, M. A., AND FRANSSEN, F. M. (2020) An update on pulmonary rehabilitation techniques for patients with chronic obstructive pulmonary disease. Expert Review of Respiratory Medicine 14(2), 149-161. doi:10.1080/17476348.2020.1700796.

MARQUES, A., REBELO, P., PAIXÃO, C., MIRANDA, S., MACHADO, A., ALVES, A., SANTOS, L., PINHO, T., ALMEIDA, S., OLIVEIRA, A., CRUZ, J., JÁCOME, C., TAVARES, A., ANDRADE, L. AND VALENTE, C. (2019). Pulmonary rehabilitation closer to patients – feasibility and effectiveness study. European Respiratory Journal 54, PA565; doi:10.1183/13993003.congress-2019.PA565.

JOBSON J.D. (1991). Multiple Linear Regression. Applied Multivariate Data Analysis. Springer Texts in Statistics. Springer, New York, NY. doi:10.1007/978-1-4612-0955-3_4.

SCHROFF, P., HITCHCOCK, J., SCHUMANN, C., WELLS, J. M., DRANSFIELD, M. T. AND BHATT, S.P. (2017). Pulmonary Rehabilitation Improves Outcomes in Chronic Obstructive Pulmonary Disease Independent of Disease Burden. Ann Am Thorac Soc 14(1), 26-32.doi:10.1513/AnnalsATS.201607-551OC.

ROCHESTER, C.L. (2019). Patient assessment and selection for pulmonary rehabilitation. Respirology 24, 844– 853. doi:10.1111/resp.13616.

COELLO COELLO, C. A., GONZÁLEZ BRAMBILA, S., FIGUEROA GAMBOA, J., CASTILLO TAPIA, M. A. AND GÓMEZ, R. H. (2020). Evolutionary multiobjective optimization: open research areas and some challenges lying ahead. Complex Intell. Syst. 6, 221–236. doi: 10.1007/s40747-019-0113-4.

COELLO COELLO, C. A., VAN VELDHUIZEN, D. A. AND LAMONT, G. B. (2002). Evolutionary Algorithms for Solving Multi-Objective Problems. New York: Kluwer.

LIAO, X., LI, Q., YANG, X., YANG, X., ZHANG, W. AND LI, W. (2008). Multiobjective

optimization for crash safety design of vehicles using stepwise regression model. Struct Multidisc Optim

, 561–569. doi:10.1007/s00158-007-0163-x.

VARGAS-HÁKIM, G. A., MEZURA-MONTES, E. AND GALVÁN, E. (2020). Evolutionary Multi-Objective Energy Production Optimization: An Empirical Comparison. Math. Comput. Appl. 25, 32. doi: 10.3390/mca25020032.

DOUMPOS, M. AND ZOPOUNIDIS, C. (2020). Multi-objective optimization models in finance and investments. J Glob Optim 76, 243–244. doi:10.1007/s10898-019-00873-z.

ZHANG, W., CAO, K., LIU, S. AND HUANG, B. (2016). A multi-objective optimization approach for health-care facility location-allocation problems in highly developed cities such as Hong Kong. Computers, Environment and Urban Systems 59, 220-230. doi:10.1016/j.compenvurbsys.2016.07.001.

LU, Q., ZHU, X., WEI, D., BAI, K., GAO, J. AND ZHANG, R. (2019). Multi-Phase and Integrated Multi-Objective Cyclic Operating Room Scheduling Based on an Improved NSGA-II Approach. Symmetry 11, 599. doi:10.3390/sym11050599.

HERIS, S. M. K. AND KHALOOZADEH, H. (2011). Open- and Closed-Loop Multiobjective Optimal Strategies for HIV Therapy Using NSGA-II. IEEE Transactions on Biomedical Engineering 58(6), 1678–1685. doi:10.1109/tbme.2011.2110651.

COSTA-CARRAPIÇO, I., RASLAN, R. AND GONZÁLEZ, J.N. (2020). A systematic review of genetic algorithm-based multi-objective optimisation for building retrofitting strategies towards energy efficiency. Energy and Buildings, 210. doi: 10.1016/j.enbuild.2019.109690.

EMMERICH, M. T. M. AND DEUTZ, A. H. (2018). A tutorial on multiobjective optimization: fundamentals and evolutionary methods. Nat Comput 17, 585–609. doi: 10.1007/s11047-018-9685-y.

MARQUES, A., JÁCOME, C., REBELO, P., PAIXÃO, C., OLIVEIRA, A., CRUZ, J., FREITAS, C., RUA, M., LOUREIRO, H., PEGUINHO, C., MARQUES, F., SIMÕES, A., SANTOS, M., MARTINS, P., ANDRÉ, A., DE FRANCESCO, S., MARTINS, V., BROOKS, D. AND SIMÃO, P. (2019). Improving access to community-based pulmonary rehabilitation: 3R protocol for real-world settings with cost-benefit analysis. BMC Public Health 19(1), 676. doi:10.1186/s12889-019-7045-1.

CHARLSON, M., SZATROWSKI, T. P., PETERSON, J. AND GOLD, J. (1994) Validation of a combined comorbidity index. Journal of clinical epidemiology 47(11), 1245-51. doi:10.1016/0895- 4356(94)90129-5.

GRAHAM, B. L., STEENBRUGGEN, I., MILLER, M. R. and others. (2019). Standardization of Spirometry 2019 Update. An Official American Thoracic Society and European Respiratory Society Technical Statement. American journal of respiratory and critical care medicine 200(8), e70-e88. doi:10.1164/rccm.201908-1590ST.

BESTALL, J. C., PAUL, E. A., GARROD, R., GARNHAM, R., JONES, P. W. AND WEDZICHA, J. A. (1999). Usefulness of the Medical Research Council (MRC) dyspnoea scale as a measure of disability in patients with chronic obstructive pulmonary disease. Thorax 54(7), 581-6. doi:10.1136/thx.54.7.581.

CRISAFULLI, E. AND CLINI, E. M. (2010). Measures of dyspnea in pulmonary rehabilitation. Multidisciplinary respiratory medicine 2010;5(3):202-10. doi:10.1186/2049-6958-5-3-202.

GEORGE, F. (2013). Diagnóstico e Tratamento da Doença Pulmonar Obstrutiva Crónica. Direção Geral da Saúde 028/2011:1-15.

JONES, P. W., HARDING, G., BERRY, P., WILKLUND, I., CHEN, W-H. AND LEIDY, N. K. (2009). Development and first validation of the COPD Assessment Test. The European respiratory journal 34(3), 648-54. doi:10.1183/09031936.00102509.

JONES, P. W., TABBERER, M. AND CHEN, W.H. (2011). Creating scenarios of the impact of COPD and their relationship to COPD Assessment Test (CAT) scores. BMC pulmonary medicine 11, 42. doi:10.1186/1471-2466-11-42.

SMID, D. E., FRANSSEN, F. M., HOUBEN-WILKE, S. and others. (2017). Responsiveness and MCID Estimates for CAT, CCQ, and HADS in Patients With COPD Undergoing Pulmonary Rehabilitation: A Prospective Analysis. Journal of the American Medical Directors Association 18(1), 53-58. doi:10.1016/j.jamda.2016.08.002.

ANDREWS, A. W., THOMAS, M. W. AND BOHANNON, R. W. (1996). Normative values for isometric muscle force measurements obtained with hand-held dynamometers. Physical therapy 76(3), 248-59.

BOHANNON, R. W. (1997). Reference values for extremity muscle strength obtained by hand-held dynamometry from adults aged 20 to 79 years. Archives of physical medicine and rehabilitation 78(1), 26-32. doi:10.1016/s0003-9993(97)90005-8.

O’SHEA, S. D., TAYLOR, N. F. AND PARATZ, J. D. (2007). Measuring muscle strength for people with chronic obstructive pulmonary disease: retest reliability of hand-held dynamometry. Archives of physical medicine and rehabilitation 88(1), 32-6. doi:10.1016/j.apmr.2006.10.002.

SPRUIT, M.A., SILLEN, M. J., GROENEN, M. T., WOUTERS, E.F. AND FRANSSEN, F. M. (2013). New normative values for handgrip strength: results from the UK Biobank. Journal of the American Medical Directors Association 14(10), 775.e5-11. doi:10.1016/j.jamda.2013.06.013.

OLIVEIRA, A., REBELO, P., PAIXÃO, C., JÁCOME, C., CRUZ, J., MARTINS, V., SIMÃO, P., BROOKS, D. AND MARQUES, A. (2021). Minimal Clinically Important Difference for Quadriceps Muscle Strength in People with COPD following Pulmonary Rehabilitation. COPD: Journal of Chronic Obstructive Pulmonary Disease. doi:10.1080/15412555.2021.1874897.

OZALEVLI, S., OZDEN, A., ITIL, O. AND AKKOCLU, A. (2007). Comparison of the Sit-to-Stand Test with 6 min walk test in patients with chronic obstructive pulmonary disease. Respiratory medicine 101(2), 286-93. doi:10.1016/j.rmed.2006.05.007.

VAIDYA, T., CHAMBELLAN, A. AND DE BISSCHOP, C. (2017). Sit-to-stand tests for COPD: A literature review. Respiratory medicine 128, 70-77. doi:10.1016/j.rmed.2017.05.003.

VAIDYA, T., DE BISSCHOP, C., BEAUMONT, M. and others. (2016). Is the 1-minute sit-tostand test a good tool for the evaluation of the impact of pulmonary rehabilitation? Determination of the minimal important difference in COPD. International journal of chronic obstructive pulmonary disease 11, 2609-16. doi:10.2147/COPD.S115439.

HOLLAND, A. E., SPRUIT, M.A., TROOSTERS, T. and others. (2014). An official European Respiratory Society/American Thoracic Society technical standard: field walking tests in chronic respiratory disease. The European respiratory journal 44(6), 1428-46. doi:10.1183/09031936.00150314.

SINGH, S.J., PUHAN, M.A., ANDRIANOPOULOS, V. and others. (2014). An official systematic review of the European Respiratory Society/American Thoracic Society: measurement properties of field walking tests in chronic respiratory disease. The European respiratory journal 44(6), 1447-78. doi:10.1183/09031936.00150414.

KILEY, J. P., SRI RAM, J., CROXTON T. L. AND WEINMANN, G. G. (2005). Challenges associated with estimating minimal clinically important differences in COPD — the NHLBI perspective. COPD 2, 43–46. doi:10.1081/copd-200050649.

CHANG, K. H. (2015). Chapter 19 - Multiobjective Optimization and Advanced Topics. Kuang-Hua Chang, e-Design,Academic Press, 1105-1173. doi: 10.1016/B978-0-12-382038-9.00019-3.

DEB, K., PRATAP, A., AGARWAL, S. AND MEYARIVAN, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182-197. doi: 10.1109/4235.996017.

AHMADI, M., ARABI, M., HOAG, D. L., AND ENGEL, B. A. (2013). A mixed discrete‐continuous variable multiobjective genetic algorithm for targeted implementation of nonpoint source pollution control practices. Water Resour. Res. 49, 8344– 8356. doi:10.1002/2013WR013656

BROWNLEE, A. E. I. AND WRIGHT, J. A. (2015). Constrained, mixed-integer and multi-objective optimisation of building designs by NSGA-II with fitness approximation. Applied Soft Computing 33, 114-126. doi:10.1016/j.asoc.2015.04.010.

MERSMANN, O. (2020). mco: Multiple Criteria Optimization Algorithms and Related Functions. R package version 1.15.6.

RSTUDIO TEAM. (2020). RStudio: Integrated Development for R. RStudio, PBC, Boston, MA.

R CORE TEAM. (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

CHANG, W., CHENG, J., ALLAIRE, J. J., SIEVERT, C., SCHLOERKE, B., XIE, Y., ALLEN, J., MCPHERSON, J., DIPERT, A., AND BORGES, B. (2021). shiny: Web Application Framework for R. R package version 1.6.0.

CILIONE, C., LORENZI, C., DELL’ORSO, D. and others. (2002). Predictors of change in exercise capacity after comprehensive COPD inpatient rehabilitation. Medical Science Monitor 8(11), CR740–CR745.

GARROD, R., MARSHALL, J., BARLEY, E. AND JONES, P. W. (2006). Predictors of success and failure in pulmonary rehabilitation. European Respiratory Journal 27(4), 788–794. doi:10.1183/09031936.06.00130605.

VAGAGGINI, B., COSTA, F., ANTONELLI, S. and others. (2009). Clinical predictors of the efficacy of a pulmonary rehabilitation programme in patients with COPD. Respiratory Medicine 103(8), 1224–1230. doi:10.1016/j.rmed.2009.01.023.

VAN RANST, D., OTTEN, H., MEIJER, J. W. AND VAN ’T HUL, A. J. (2011). Outcome of pulmonary rehabilitation in COPD patients with severely impaired health status. International Journal of Chronic Obstructive Pulmonary Disease 6, 647–657. doi:10.2147/COPD.S24579.

NIEDERMAN, M. S., CLEMENTE, P. H., FEIN, A. M. and others. (1991). Benefits of a multidisciplinary pulmonary rehabilitation program; improvements are independent of lung function. Chest 99(4), 798–804. doi:10.1378/chest.99.4.798.

ALTENBURG, W. A., DE GREEF, M. H., TEN HACKEN, N. H. AND WEMPE, J. B. (2012). A better response in exercise capacity after pulmonary rehabilitation in more severe COPD patients. Respiratory Medicine 106(5), 694–700. doi: 10.1016/j.rmed.2011.11.008.

ARYAL, S., DIAZ-GUZMAN, E., AND MANNINO, D. M. (2013). COPD and gender differences: an update. Translational Research 162(4), 208–218. doi:10.1016/j.trsl.2013.04.003.

NTRITSOS, G., FRANEK, J., BELBASIS, L., CHRISTOU, M. A., MARKOZANNES, G., ALTMAN, P., FOGEL, R., SAYRE, T., NTZANI, E. E. AND EVANGELOU, E. (2018). Gender-specific estimates of COPD prevalence: a systematic review and meta-analysis. Int J Chron Obstruct Pulmon Dis 13, 1507-1514. doi:10.2147/COPD.S146390.

DE TORRES, J. P., CASANOVA, C., COTE, C. G., AND CELLI, B. R. (2009). Women with chronic obstructive pulmonary disease: an emerging phenotype of the disease. Therapy 6(6), 821–830. doi:10.2217/thy.09.64.

MARCINIUK, D. D., BROOKS, D., BUTCHER, S., DEBIGARE, R. and others. (2010). Optimizing pulmonary rehabilitation in chronic obstructive pulmonary disease-practical issues: a Canadian Thoracic Society Clinical Practice Guideline. Can Respir J 17(4), 159-68. doi:10.1155/2010/425975.

ROBLES, P.G., BROOKS, D., GOLDSTEIN, R., SALBACH, N. AND MATHUR, S. (2014). Gender-associated differences in pulmonary rehabilitation outcomes in people with chronic obstructive pulmonary disease: a systematic review. J Cardiopulm Rehabil Prev 34(2), 87-97. doi: 10.1097/HCR.0000000000000018.

BHATT, S. P., KIM, Y. I., HARRINGTON, K. F. and others. (2018). Smoking duration alone provides stronger risk estimates of chronic obstructive pulmonary disease than pack-years. Thorax 73(5), 414-421. doi:10.1136/thoraxjnl-2017-210722.

SUN, Y., MILNE, S., JAW, J. E., YANG, C. X., XU, F., LI, X., OBEIDAT, M. AND SIN, D. D. (2019). BMI is associated with FEV1 decline in chronic obstructive pulmonary disease: a meta-analysis of clinical trials. Respir Res 20, 236. doi:10.1186/s12931-019-1209-5.

CAO, C., WANG, R., WANG, J., BUNJHOO, H., XU, Y. AND XIONG, W. (2012). Body Mass Index and Mortality in Chronic Obstructive Pulmonary Disease: A Meta-Analysis. PloS One 7(8), e43892. doi:10.1371/journal.pone.0043892.

ZUWALLACK, R. L., PATEL, K., REARDON, J.Z., CLARK, B.A. III AND NORMANDIN, E.A. (1991). Predictors of improvement in the 12-minute walking distance following a six-week outpatient pulmonary rehabilitation program. Chest 99, 805–808. doi:10.1378/chest.99.4.805.

Published
2022-07-10
How to Cite
Cabral, J., Afreixo, V., J Silva, C., Tavares, A., & Marques, A. (2022). A Multiobjective Optimization Approach to Pulmonary Rehabilitation Effectiveness in COPD. Statistics, Optimization & Information Computing, 11(2), 299-331. https://doi.org/10.19139/soic-2310-5070-1505
Section
Research Articles