Systematic Literature Review on Named Entity Recognition: Approach, Method, and Application
Keywords:
Named entity recognition, entity extraction, entity detection, entity classification, natural language processing
Abstract
Named entity recognition (NER) is one of the preprocessing stages in natural language processing (NLP), which functions to detect and classify entities in the corpus. NER results are used in various NLP applications, including sentiment analysis, text summarization, chatbot, machine translation, and question answering. Several previous reviews partially discussed NER, for instance, NER reviews in specific domains, NER classification, and NER deep learning. This paper provides a comprehensive and systematic review on NER topic studies published from 2011 to 2020. The main contribution of this review is to present a comprehensive systematic literature review on NER from preprocessing techniques, datasets, application domains, feature extraction techniques, approaches, methods, and evaluation techniques. The result concludes that the deep learning approach and the Bi-directional long short-term memory with a conditional random field (Bi-LSTM-CRF) method are the most interesting methods among NER researchers. At the same time, medical and health are NER researchers' most popular domains. These developments have also led to an increasing number of public datasets in the medical and health fields. At the end of this review, we recommend some opportunities and challenges for NER research going forward.
Published
2024-02-28
How to Cite
Warto, Rustad, S., Shidik, G. F., Noersasongko, E., Purwanto, Muljono, & Setiadi, D. R. I. M. (2024). Systematic Literature Review on Named Entity Recognition: Approach, Method, and Application. Statistics, Optimization & Information Computing, 12(4), 907-942. https://doi.org/10.19139/soic-2310-5070-1631
Issue
Section
Research Articles
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).