Reliability estimation of a multicomponent stress-strength model based on copula function under progressive first failure censoring
Abstract
In reliability analysis of a multicomponent stress-strength model, most studies assumed independence between stress and strength variable. However, this assumption may not be realistic. To account for dependency, copula approach can be used. Although it is important, only few studies considered this case and usually under complete study. Observing the failures for all units may be difficult due to cost and time limitation. Recently, progressive first failure censoring scheme has attracted attention in the literature due to its ability to save time and money. To the best of our knowledge, dependent multicomponent stress-strength model under progressive first failure censoring was not considered yet. In this article, we derived the likelihood function for progressive first failure censored sample under copula and multicomponent stress strength model. A simulation study is performed and a real dataset is analyzed to test the applicability of the model. Maximum likelihood estimates, asymptotic confidence interval and bootstrap confidence intervals are obtained. The results illustrated that the proposed censoring scheme under copula provides a good estimate for the reliability.
Published
2024-06-29
How to Cite
Abuelamayem , O. (2024). Reliability estimation of a multicomponent stress-strength model based on copula function under progressive first failure censoring. Statistics, Optimization & Information Computing, 12(6), 1601-1611. https://doi.org/10.19139/soic-2310-5070-1894
Issue
Section
Research Articles
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).