Optimized Parameter Estimation and Integrating Neural Network Forecasting of Dynamic Plant-Livestock Model for Early Warning in Agro-Environment Control Systems
Keywords:
Plant-Herbivore interaction model, Optimization, Parameter estimation, Neural Network Auto-Regressive model, Forecasting, Estimate weighting
Abstract
The research utilizes the Lotka-Volterra prey-predator model to study Plant-Herbivore dynamics, focusing on the relationship between traditional livestock farming and vegetation conditions. Advanced methods are developed to improve the precision and efficiency of parameter estimation in these models. Neural networks are incorporated to enhance forecasting abilities, and an extension of the Plant-Herbivore models includes Botswana's climate and livestock variables. Efficient parameter space exploration is achieved using the Runge-Kutta method along with Multistart and the local solver $fmincon$ in MATLAB. This method improves parameter estimation accuracy. To address the impact of homogeneity assumptions in the data, estimate aggregation through weighting and time conversion is applied. Furthermore, the study investigates the use of nonlinear least squares to further refine the process, allowing for the identification of parameters that best fit observed livestock data, even with non-linearity. By using optimized parameter estimation techniques along with normalized nonlinear least squares, the cumulative error was reduced from an initial 1563.4521 to a final value of 0.0038, well within the specified thresholds (1.0, 0.1, and 0.01). Comparisons between Autoregressive Integrated Moving Average (ARIMA) and Neural Network Auto-Regressive (NNAR) models showed that NNAR models outperformed ARIMA models, with lower variance estimates (0.000004 - 0.000562) compared to ARIMA (0.103 - 0.155). NNAR models displayed Mean Error (ME) values ranging from -0.0012 to 0.0140, indicating a close match between forecasts and actual values with minor deviations. As a result, NNAR forecasting was used for predicting soil moisture, death, and harvest rates, which were integrated into the extended Plant-Herbivore model. This integration enabled the estimation of livestock production trajectories for 2021-2022, along with corresponding interpretations. The study also assessed the uncertainty propagation from NNAR forecasts onto the Plant-Herbivore dynamic model, revealing an increase in uncertainty with longer lead times.
Published
2024-07-01
How to Cite
Puoetsile, A., Lekgari, M., Kassa, S., & Mengistu Tsidu, G. (2024). Optimized Parameter Estimation and Integrating Neural Network Forecasting of Dynamic Plant-Livestock Model for Early Warning in Agro-Environment Control Systems. Statistics, Optimization & Information Computing, 12(5), 1460-1475. https://doi.org/10.19139/soic-2310-5070-1906
Issue
Section
Research Articles
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).