Complexity analysis of primal-dual interior-point methods for semidefinite optimization based on a new type of kernel functions
Keywords:
Linear semidefinite programming, Kernel functions, Complexity analysis, Primal-dual interior point methods, Large-update methods
Abstract
Kernel functions are essential for designing and analyzing interior-point methods (IPMs). They are used to determine search directions and reduce the computational complexity of the interior point method. Currently, IPM based on kernel functions is one of the most effective methods for solving LO [1,20], second-order cone optimization (SOCO) [2], and symmetric optimization (SO) and is a very active research area in mathematicalprogramming. This paper presents a large-update primal-dual IPM for SDO based on a new bi-parameterized hyperbolic kernel function. Then we proved that the proposed large-update IPM has the same complexity bound as the best-known IPMs for solving these problems. Taking advantage of the favorable characteristics of the kernel function, we can deduce that the iteration bound for the large update method is $\mathcal{O}\left( \sqrt{n}\log n\log\dfrac{n}{\varepsilon }\right) $ when a takes a special value utilizing the favorable properties of the kernel function. These theoretical results play an essential role in the design and analysis of IPMs for CQSCO [7] and the Cartesian$\ P_{\ast }\left( \kappa \right) $-SCLCP [8]. The proximity function has never been used. In order to validate the efficacy of our algorithm and verify the effectiveness of our algorithm, examples aregiven to illustrate the applicability of our main results, and we compare our numerical results with some alternatives presented in the literature.
Published
2024-09-26
How to Cite
Bounibane, B., & Chalekh, R. (2024). Complexity analysis of primal-dual interior-point methods for semidefinite optimization based on a new type of kernel functions. Statistics, Optimization & Information Computing, 12(6), 1745-1761. https://doi.org/10.19139/soic-2310-5070-1927
Issue
Section
Research Articles
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).