GAN based approaches for self-supervised segmentation: A comparative study
Abstract
Image segmentation is a fundamental image processing technique that involves di-viding an image into distinct regions or segments to enable the analysis and extrac-tion of valuable information. It finds applications in various fields including medi-cine, pattern recognition, computer vision, and security surveillance. Different types of image segmentation techniques can be employed based on specific application requirements, including thresholding, region-based segmentation, edge-based segmen-tation, clustering-based segmentation, active contour models (Snakes), graph-based segmentation, watershed segmentation, and deep learning-based segmentation. the latter has become a powerful tool in image segmentation. Deep learning (DL) models can be trained on large datasets of images, allowing them to learn intricate relation-ships between pixels and object classes. This is particularly beneficial for challenging segmentation tasks. However, one significant challenge is the scarcity of labeled training data. To address this issue, self-supervised approaches using generative mod-els like Generative Adversarial Networks (GANs) provide a solution. GANs can gener-ate synthetic training data, which is useful for tasks where acquiring labeled training data is difficult or expensive, such as in medical imaging or remote sensing applica-tions. Additionally, GANs can generate realistic segmentation masks, which are cru-cial for tasks like medical imaging. In this study, we conducted a comparative analy-sis of DL-based segmentation approaches for COVID-19 CT scans. The evaluated approaches were assessed using metrics such as Dice Score, Specificity, and Sensitivi-ty. These metrics provide quantitative measures of the segmentation performance, allowing for an objective evaluation and comparison of the different techniques.
Published
2024-02-21
How to Cite
Elmourabit, Z., & Oumayma Banouar. (2024). GAN based approaches for self-supervised segmentation: A comparative study. Statistics, Optimization & Information Computing, 12(3), 646-659. https://doi.org/10.19139/soic-2310-5070-1928
Section
Research Articles
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).