An Effective Randomized Algorithm for Hyperspectral Image Feature Extraction
Keywords:
Hyperspectral images(HSI), randomized algorithm, variable T-product, 3D feature extraction
Abstract
Analyzing the spectral and spatial characteristics of Hyperspectral Imaging (HSI) in a three-dimensional space is a challenging task. Recently, there have been developments in 3D feature extraction methods based on tensor decomposition, which allow for the effective utilization of both global and local information in HSI. These methods also explore the inherent low-rank properties of HSI through tensor decomposition. In this paper, we propose a new approach called variable randomized T-product decomposition (Vrt-SVD), which is a variation of Tensor Singular Spectral Analysis. The goal of this approach is to improve the efficiency of tensor methods for feature extraction and reduce artifacts of image processing. By using a randomized algorithm based on the variable t-SVD, we are able to capture both global and local spatial and spectral information in HSI efficiently, which enables us to explore its low-rank characteristics. To evaluate the effectiveness of the extracted features, we use a Support Vector Machine (SVM) classifier to assess the accuracy of image classification. By conducting numerous numerical experiments, we provide strong evidence to show that the proposed method outperforms several advanced feature extraction techniques.
Published
2024-02-18
How to Cite
Feng, J., Yan, R., Yu, G., & Chen, Z. (2024). An Effective Randomized Algorithm for Hyperspectral Image Feature Extraction. Statistics, Optimization & Information Computing, 12(2), 530-546. https://doi.org/10.19139/soic-2310-5070-1980
Issue
Section
Research Articles
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).