Generalization of Power Lindley Distribution: Properties and Applications
Keywords:
Generalized Kumaraswamy family, Kumaraswamy power Lindley, power Lindley, maximum likelihood estimation
Abstract
This article introduces the generalized Kumaraswamy power Lindley (GKPL) distribution, a novel probabilistic model derived by combining the generalized Kumaraswamy (GK-G) family with the power Lindley (PL) distribution. The GKPL distribution encompasses a wide range of distributions, including Kumaraswamy power Lindley, Kumaraswamy Lindley, generalized power Lindley, generalized Lindley, power Lindley, and the well-known Lindley, as special cases. Fundamental properties are derived, such as the hazard rate function, survival function, quantile function, reverse hazard function, moments, mean residual life function, entropy, and order statistics. To determine the parameters of the GKPL distribution, four estimation methods, including maximum likelihood, least squares, Cramer-von Mises, and Anderson-Darling methods, are used to estimate the parameters of the GKPL distribution. The effectiveness of the estimation techniques is assessed by employing Monte Carlo simulations. The adaptability and validity of the proposed GKPL distribution are compared with alternative models, including the Kumaraswamy power Lindley (KPL), Extended Kumaraswamy power Lindley (EKPL), type II generalized Topp Leone-power Lindley (TIIGTLPL), exponentiated generalized power Lindley (EGPL), generalized Kumaraswamy Weibull (GKW), generalized Kumaraswamy log-logistic (GKLLo), and generalized Kumaraswamy generalized power Gompertz (GKGPGo) distributions, through analyses of three real datasets.
Published
2024-04-17
How to Cite
Eissa, F. Y., & Sonar, C. D. (2024). Generalization of Power Lindley Distribution: Properties and Applications. Statistics, Optimization & Information Computing, 12(4), 1019-1041. https://doi.org/10.19139/soic-2310-5070-1987
Issue
Section
Research Articles
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).