A novel Mathematical Modeling for Deep Multilayer Perceptron Optimization: Architecture Optimization and Activation Functions Selection
Abstract
The Multilayer Perceptron (MLP) is an artificial neural network composed of one or more hidden layers. It has found wide use in various fields and applications. The number of neurons in the hidden layers, the number of hidden layers, and the activation functions employed in each layer significantly influence the convergence of MLP learning algorithms. This article presents a model for selecting activation functions and optimizing the structure of the multilayer perceptron, formulated in terms of mixed-variable optimization. To solve the obtained model, a hybrid algorithm is used, combining stochastic optimization and the backpropagation algorithm. Our algorithm shows better complexity and execution time compared to some other methods in the literature, as the numerical results show.
Published
2024-06-06
How to Cite
Elansari, T., Ouanan, M., & Bourray, H. (2024). A novel Mathematical Modeling for Deep Multilayer Perceptron Optimization: Architecture Optimization and Activation Functions Selection. Statistics, Optimization & Information Computing, 12(5), 1409-1424. https://doi.org/10.19139/soic-2310-5070-1990
Issue
Section
Research Articles
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).