Modelling and forecasting Masvingo Province maternal mortality using time series models
Keywords:
Maternal mortality deaths, forecasting, maternal mortality ratio
Abstract
In light of the Zimbabwean government's efforts, particularly through the Ministry of Health and Child Care (MoHCC), to reduce maternal mortality rates and achieve the aim of Sustainable Development Goal (SDG) number three, target one (SDG 3.1), which aims to reduce the global maternal mortality rate to fewer than 70 deaths per 100,000 live births, maternal mortality rates in Zimbabwe continue to rise. Time series techniques were used to model and predict quarterly maternal mortality statistics for Masvingo Province from January 2014 to December 2021. The time plot analysis revealed significant fluctuations in mortality, with the highest rates of maternal deaths recorded in 2018. The application of the Box-Jenkins methodology identified the ARIMA(2, 1, 1) model as the most suitable for modeling and forecasting quarterly maternal deaths among the fitted models. The suitability of the model was validated by the Akaike Information Criterion (AIC), and its forecast accuracy was confirmed by the Mean Absolute Error (MAE) and the root mean square error (RMSE). Consequently, it was used to project future maternal deaths. The projected values indicate a slight increase in quarterly mortality rates during the period, but there appears to be a relatively stable trend with moderate fluctuations, suggesting that Zimbabwe has not met the targets of SDG 3.1. These results underscore the need to re-assess current intervention programs aimed at reducing maternal mortality. The findings of the study could guide the refinement of existing strategies and the implementation of innovative solutions to urgently address unacceptably high mortality rates. Using statistical models such as the one used in this study, the Ministry of Health and Child Care (MoHCC) can make informed decisions in the health sector and implement effective interventions to combat maternal mortality.
Published
2024-07-12
How to Cite
Makoni, T., & Ndlovu, N. T. (2024). Modelling and forecasting Masvingo Province maternal mortality using time series models . Statistics, Optimization & Information Computing, 12(5), 1543-1552. https://doi.org/10.19139/soic-2310-5070-2011
Issue
Section
Research Articles
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).