A primal-dual large-update interior-point algorithm for semi-definite optimization based on a new kernel function
Abstract
Based on a new parametric kernel function, this paper presents a primal-dual large-update interior-point algorithm (IPM) for semi-definite optimization (SDO) problems. The new parametric function is neither self-regular function nor the usual logarithmic barrier function. It is strongly convex and possesses some novel analytic properties. We analyse this new parametric kernel function and show that the proposed algorithm has favorable complexity bound in terms of the analytic properties of the kernel function. Moreover, the complexity bound for our large-update IPM is shown to be O(\sqrt{n}(\log n)^2 \log\frac{n}{\epsilon}). Some numerical results are reported to illustrate the feasibility of the proposed algorithm.
Published
2013-12-01
How to Cite
Zhao, D., & Zhang, M. (2013). A primal-dual large-update interior-point algorithm for semi-definite optimization based on a new kernel function. Statistics, Optimization & Information Computing, 1(1), 41-61. https://doi.org/10.19139/soic.v1i1.8
Issue
Section
Research Articles
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).