Solving Burger's equation by semi-analytical and implicit method

  • Jalil Manafian Heris
  • Isa Zamanpour

Abstract

In this work, the modified Laplace Adomian decomposition method (LADM) is applied to solve the Burgers’ equation. In addition, example that illustrate the pertinent features of this method is presented, and the results of the study is discussed. We prove the convergence of LADM applied to the Burgers’ equation. Also, Burgers’ equation has some discontinuous solutions because of effects of viscosity term. These discontinuities raise phenomenon of shock waves. Some explicit and implicit numerical methods have been experimented on Burgers’ equation but these schemes have not been seen proper in this case because of their conditional stability and existence of viscosity term. We consider two types of box schemes and implement on Burgers’ equation to get better results with no artificial wiggles.

Author Biographies

Jalil Manafian Heris
Department of Mathematics, College of Mathematics, Ahar Branch, Islamic Azad University, Iran
Isa Zamanpour
Department of Mathematics, College of Mathematics, Karaj Branch, Islamic Azad University, Iran

References

M. J. Ablowitz, P. A. Clarkson, Solitons, nonlinear evolution equations and inverse scattering,

Cambridge: Cambridge University Press, 1991.

A. M. Wazwaz, Travelling wave solutions for combined and double combined sine-cosine-Gordon

equations by the variable separated ODE method, Appl. Math. Comput., 177 (2006) 755-760.

M. Dehghan and J. Manafian, The solution of the variable coefficients fourth–order parabolic

partial differential equations by homotopy perturbation method, Z. Naturforsch, 64 (2009) 420-430.

J. H. He, Variational iteration method a kind of non-linear analytical technique: some examples,

Int. J. Nonlinear Mech., 34 (1999) 699-708.

M. Dehghan, J. Manafian and A. Saadatmandi, Application of semi–analytic methods for the

Fitzhugh–Nagumo equation, which models the transmission of nerve impulses, Math. Meth. Appl.

Sci., 33 (2010) 1384-1398.

M. Dehghan, J. Manafian and A. Saadatmandi, Solving nonlinear fractional partial differential

equations using the homotopy analysis method, Num. Meth. Partial Differential Eq. J., 26 (2010)

-479.

M. Dehghan, J. Manafian and A. Saadatmandi, The solution of the linear fractional partial differential

equations using the homotopy analysis method, Z. Naturforsch, 65a (2010) 935-949.

E. Fan, Extended tanh-function method and its applications to nonlinear equations, Phys. Lett.

A., 277 (2000) 212-218.

C. L. Bai, H. Zhao, Generalized extended tanh-function method and its application, Chaos Solitons

Fractals, 27 (2006) 1026-1035.

J. M. Heris, I. Zamanpour, Exact travelling wave solutions of the symmetric regularized long wave

(SRLW) using analytical methods, Stat., Optim. Inf. Comput., 2 (2014) 47-55.

X. H. Menga, W. J. Liua, H. W. Zhua, C. Y. Zhang and B. Tian, Multi-soliton solutions and a

B¨acklund transformation for a generalized variable-coefficient higher-order nonlinear Schr¨o dinger

equation with symbolic computation, Phys. A., 387 (2008) 97-107.

M. Wang, X. Li, and J. Zhang, The (G0

G )-expansion method and travelling wave solutions of

nonlinear evolution equations in mathematical physics, Phys. Lett. A, 372 (2008) 417-423.

G. Adomian, Solving Frontier Problems of Physics: The Decomposition Method, Kluwer Academic

Publishers, Boston, MA, 1994.

M. Dehghan, M. Tatari, Solution of a semilinear parabolic equation with an unknown control

function using the decomposition procedure of Adomian, Num. Meth. Par. Diff. Eq, 23 (2007) 499-510.

M. Tatari, M. Dehghan, Numerical solution of Laplace equation in a disk using the Adomian

decomposition method, Phys. Scr, 72 (2005) 345-348.

I. V. Andrianov, V. I. Olevskii, S. Tokarzewski, A modified Adomian’s decomposition method,

Appl. Math. Mech, 62 (1998) 309-314.

S. N. Venkatarangan, K. Rajalakshmi, A modification of Adomian’s solution for nonlinear oscillatory

systems, Comput. Math. Appl, 29 (1995) 67-73.

S. N. Venkatarangan, K. Rajalakshmi, Modification of Adomian’s decomposition method to solve

equations containing radicals, Comput. Math. Appl, 29 (1995) 75-80.

A. M. Wazwaz, A new algorithm for calculating Adomian polynomials for nonlinear operators,

Appl. Math. Comput, 111 (2000) 53-69.

S. A Khuri, A Laplace decomposition algorithm applied to class of nonlinear differential equations,

J. Math. Appl, 4 (2001) 141-155.

S. A Khuri, A new approach to Bratu’s problem, Appl. Math. Comput, 147 (2004) 131-136.

Nasser S. Elgazery, Numerical solution for the Falkner-Skan equation, Chaos Solitons and Fractals,

(2008) 738-746.

M. Hussain, M. Khan, Modified Laplace decomposition method, Appl. Math. Scie, 4 (2010) 1769-1783.

J.M. Burgers, The Nonlinear Diffusion Equation, Reidel, Dordtrecht, 1974.

A. Veksler, Y. Zarmi, Wave interactions and the analysis of the perturbed Burgers equation,

Physica D, 211 (2005) 57-73.

A. M. Wazwaz, Analytic study on Burgers, Fisher, Huxley equations and combined forms of these

equations, Appl Math Compu, 195 (2008) 754-761.

Haim Brezis, Felix Browder, Partial differential equations in the 20th century, Adv. Math., 135

(1998) 76-144.

N.J. Zabusky, M.D. Kruskal, Interaction of solitons in a collisionless plasma and the recurrence of initial states, Phys. Rev., 15 (1965) 240-243.

M. T. Rashed, Lagrange interpolation to compute the numerical solutions of differential, integral

and integro-differential equations, Appl. Math. Comput, 151 (2004) 869-878.

A. M. Wazwaz, A comparison study between the modified decomposition method and the traditional

methods for solving nonlinear integral equations, Appl. Math. Comput, 181 (2006) 1703-1712.

M. Dehghan, J. Manafian, A. Saadatmandi, Solving nonlinear fractional partial differential equations

using the homotopy analysis method, Num. Meth. Partial Differential Eq. J, 26 (2010) 486-498.

M. Dehghan, J. Manafian, A. Saadatmandi, The solution of the linear fractional partial differential

equations using the homotopy analysis method, Z. Naturforsch, 65a (2010) 935-949.

M. Dehghan, J. Manafian, The solution of the variable coefficients fourth–order parabolic partial

differential equations by homotopy perturbation method, Z. Naturforsch, 64a (2009) 420-430.

M. Dehghan, J. Manafian, A. Saadatmandi, Application of semi–analytic methods for the Fitzhugh–Nagumo equation, which models the transmission of nerve impulses, Math. Meth. Appl. Sci, 33 (2010) 1384-1398.

J. Manafian Heris, M. Bagheri, Exact solutions for the modified KdV and the generalized KdV equations via Exp-function method, J. Math. Extension, 4 (2010) 77-98.

N. Ngarhasta, B. Some, K. Abbaoui, Y. Cherruault, New numerical study of adomian method

applied to a diffusion model, Kybernetes, 31 (2002) 61-75.

U.M. Ascher, R.I. McLachlan, On symplectic and multisymplectic schemes for the KdV equation,

J. Sci. Comput., 31 (2005) 83-104.

U.M. Ascher, R.I. McLachlan, Multisymplectic box schemes and the Korteweg-de Vries equation,

Numer. Algor. Appl. Numer. Algor., 48 (2004) 255-269.

E. Yusufoglu (Agadjanov), Numerical solution of Duffing equation by the Laplace decomposition

algorithm, Appl. Math. Comput, 177 (2006) 572-580.

Published
2014-08-24
How to Cite
Manafian Heris, J., & Zamanpour, I. (2014). Solving Burger’s equation by semi-analytical and implicit method. Statistics, Optimization & Information Computing, 2(3), 222-233. https://doi.org/10.19139/soic.v2i3.70
Section
Research Articles