Generalized Second-Order Parametric Optimality Conditions in Semiinfinite Discrete Minmax Fractional Programming and Second-Order Univexity

  • Ram Verma University of North Texas
  • G. Zalmai Northern Michigan University
Keywords: Semiinfinite discrete minmax fractional programming, Generalized sufficient optimality conditions, Generalized second-order (F, β, ϕ, ρ, θ, m)-univex functions

Abstract

This paper deals with mainly establishing numerous sets of generalized second order paramertic sufficient optimality conditions for a semiinfinite discrete minmax fractional programming problem, while the results on semiinfinite discrete minmax fractional programming problem achieved based on some partitioning schemes under various types of generalized second order univexity assumptions. 

References

W. Dinkelbach, On nonlinear fractional programming, Management Sci. 13 (1967), 492 - 498.

M. A. Hanson, Second order invexity and duality in mathematical programming, Opsearch 30 (1993), 313 - 320.

B. Mond and T. Weir, Generalized concavity and duality, Generalized Concavity in Optimization and Economics (S. Schaible and W. T. Ziemba, eds.), Academic Press, New York, 1981, pp. 263 - 279.

R. U. Verma and G. J. Zalmai, Second-order parametric optimality conditions in semiinfinite discrete minmax fractional programming based on generalized (ϕ,η,ρ,θ, m)-sonvexities, Transactions on Mathematical Programming and Applications 4 (1) (2016), 62 - 84.

R. U. Verma and G. J. Zalmai, Generalized higher order (ϕ,η,ζ,ρ,θ,m)-invexities and parametric optimality conditions for discrete minmax fractional programming, Transactions on Mathematical Programming and Applications 4 (1) (2016), 85 - 101.

G. J. Zalmai, Optimality conditions and duality for constrained measurable subset selection problems with minmax objective functions, Optimization 20 (1989), 377 - 395.

G. J. Zalmai, Generalized second-order (F,β,ϕ,ρ,θ)-univex functions and parametric duality models in semiinfinite discrete minmax fractional programming, Adv. Nonlin. Var. Ineq. 15 (2012), 63 - 91.

G. J. Zalmai, Hanson-Antczak-type generalized (α,β,γ,ξ,η,ρ,θ)-V-invex functions in semiinfinite multiobjective fractional programming, Part I: Sufficient efficiency conditions, Advances in Nonlinear Variational Inequalities 16 (1) (2013), 91 - 114.

G. J. Zalmai and Qinghong Zhang, Generalized (F,β,ϕ,ρ,θ)-univex functions and global parametric sufficient optimality conditions in semiinfinite discrete minmax fractional programming, PanAmerican Math. J. 17 (2007), 1 - 26.

Published
2016-02-28
How to Cite
Verma, R., & Zalmai, G. (2016). Generalized Second-Order Parametric Optimality Conditions in Semiinfinite Discrete Minmax Fractional Programming and Second-Order Univexity. Statistics, Optimization & Information Computing, 4(1), 15-29. https://doi.org/10.19139/soic.v4i1.188
Section
Research Articles