Breast cancer survival analysis and machine learning to predict the impact of different treatments
Keywords:
Breast cancer, Survival analysis, Chemotherapy, Radiotherapy, overall survival (OS), breast cancer-specific survival (BCSS)
Abstract
Breast cancer is the most common form of cancer among women, impacting approximately one million women worldwide. New treatments are being developed yearly, improving breast cancer patients' survival rates. To explore the impact of different treatments, we conducted this study using data from the Surveillance, Epidemiology, and End Results (SEER) database. The study employed Kaplan-Meier analysis to examine breast cancer-specific survival (BCSS) and overall survival (OS) rates across various treatment options, including ‘chemotherapy’, ‘radiotherapy, ‘both therapies’, and ‘no therapy’. The log-rank test was also utilized to assess the statistical significance of differences observed between multiple survival curves. We found that recommended treatment for most breast cancer cases, based on BCSS analysis, is the combination of ‘both’ chemotherapy and radiotherapy. On the other hand, according to OS analysis, ‘radiotherapy only’ or ‘in conjunction with chemotherapy’ is the superior treatment for most breast cancer cases. They are often preferred over ‘chemotherapy only’ for most breast cancer patients. Machine learning was used to develop ten models predicting the survivability for OS and BCSS. C5.0 algorithm consistently achieves strong overall performance. It achieves high accuracy 0.98 and sensitivity of 0.99 for both OS and BCSS, reasonably RMSE of (0.14, 0.15 for BCSS and OS, respectively), and good ROC score of (0.91, 0.88 for BCSS and OS, respectively).
Published
2024-05-30
How to Cite
Elnawasany, A., Tawfik, B., & Makhlouf, M. (2024). Breast cancer survival analysis and machine learning to predict the impact of different treatments. Statistics, Optimization & Information Computing, 12(5), 1492-1512. https://doi.org/10.19139/soic-2310-5070-2027
Issue
Section
Research Articles
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).