Estimating Stress-Strength Reliability in the Beta-Pareto Distribution Using Ranked Set Sampling

  • Ali Jaleel Najm
  • Hossein Jabbari Khamnei university of Tabriz
  • Somayeh Makouei
Keywords: Beta-Pareto distribution; Maximum likelihood estimator; Ranked set sampling; Stress-strength reliability

Abstract

This paper introduces a novel approach for estimating the stress-strength reliability in the beta-pareto ($BP$) distribution by employing ranked set sampling ($RSS$). Stress-strength reliability is a crucial measure that quantifies the probability of an item or system operating without failure under random stress and strength conditions. The study focuses on estimating the reliability function ($R(t)$) and the probability ($P$) of stress being lower than strength when both stress and strength variables follow independent random variables from the $BP$ distribution. The maximum likelihood $ML$ estimator of $R(t)$ and $P$ is obtained, and its performance is compared with the estimator based on simple random sampling ($SRS$). The proposed methodology is evaluated using real data from the Wheaton River experiment, showcasing its practical applicability and effectiveness. The findings highlight the superiority of our approach in accurately estimating stress-strength reliability in the $BP$ distribution, providing valuable insights for various fields such as engineering, finance, and risk analysis.

References

\bibitem{muttlak2010estimating}
Muttlak~Hassen A, WA~Abu-Dayyeh, MF~Saleh, and E~Al-Sawi.
\newblock Estimating $P(Y exponential distribution.
\newblock {\em Communications in Statistics—Theory and Methods},
39(10):1855--1868, 2010.

\bibitem{abbas2014objective}
Kamran Abbas and Yincai Tang.
\newblock Objective bayesian analysis of the frechet stress--strength model.
\newblock {\em Statistics \& Probability Letters}, 84:169--175, 2014.

\bibitem{akgul2017estimation}
Akgul and Birdal senoglu.
\newblock Estimation of stress--strength using ranked set sampling for the
weibull distribution.
\newblock {\em Quality Technology \& Quantitative Management}, 14(3):296--309,
2017.

\bibitem{al2012improved}
Amer~Ibrahim Al-Omari and Abdul Haq.
\newblock Improved quality control charts for monitoring the process mean,
using double-ranked set sampling methods.
\newblock {\em Journal of Applied Statistics}, 39(4):745--763, 2012.

\bibitem{al2001estimation}
Mohammad~Fraiwan Al-Saleh and Khalaf Al-Shrafat.
\newblock Estimation of average milk yield using ranked set sampling.
\newblock {\em Environmetrics: The official journal of the International
Environmetrics Society}, 12(4):395--399, 2001.

\bibitem{birnbaum1956use}
ZW~Birnbaum et~al.
\newblock On use of the mann-whitney statistic.
\newblock In {\em Proceedings of the third Berkeley symposium on mathematical
statistics and probability}, volume~1, pages 13--17. the University of
California Press Berkeley, CA, USA, 1956.

\bibitem{choulakian2001goodness}
Vartan Choulakian and Michael~A Stephens.
\newblock Goodness-of-fit tests for the generalized pareto distribution.
\newblock {\em Technometrics}, 43(4):478--484, 2001.

\bibitem{clutter1972ranked}
JL~Clutter.
\newblock Ranked-set sampling theory with order statistics background.
\newblock {\em Biometrics}, 28:545--555, 1972.

\bibitem{dong2013estimation}
Xiaofang Dong, Liangyong Zhang, and Fengqin Li.
\newblock Estimation of reliability for exponential distributions using ranked
set sampling with unequal samples.
\newblock {\em Quality Technology \& Quantitative Management}, 10(3):319--328,
2013.

\bibitem{eugene2002beta}
Nicholas Eugene, Carl Lee, and Felix Famoye.
\newblock Beta-normal distribution and its applications.
\newblock {\em Communications in Statistics-Theory and methods},
31(4):497--512, 2002.

\bibitem{ghitany2005reliability}
ME~Ghitany.
\newblock On reliability estimation based on ranked set sampling.
\newblock {\em Coounications in Statistics--Theory and Methods},
34(5):1213--1216, 2005.

\bibitem{gunasekera2015generalized}
Sumith Gunasekera.
\newblock Generalized inferences of r= pr (x> y) for pareto distribution.
\newblock {\em Statistical Papers}, 56(2):333--351, 2015.

\bibitem{khamnei2017recurrence}
Hossein~Jabbari Khamnei and Roghaye Makouei.
\newblock Recurrence relation for the moments of order statistics from a
beta-pareto distribution.
\newblock {\em Istatistik Journal of The Turkish Statistical Association},
10(1):1--13, 2017.

\bibitem{khamnei2022parameter}
Hossein~Jabbari Khamnei, Ieva Meidute-Kavaliauskiene, Masood Fathi, Asta
Valackien{\.e}, and Shahryar Ghorbani.
\newblock Parameter estimation of the exponentiated pareto distribution using
ranked set sampling and simple random sampling.
\newblock {\em Axioms}, 11(6):293, 2022.

\bibitem{krishnaji1970characterization}
N~Krishnaji.
\newblock Characterization of the pareto distribution through a model of
underreported incomes.
\newblock {\em Econometrica: Journal of the Econometric Society}, pages
251--255, 1970.

\bibitem{kundu2006estimation}
Debasis Kundu and Rameshwar~D Gupta.
\newblock Estimation of p [y< x] for weibull distributions.
\newblock {\em IEEE Trans. Reliab.}, 55(2):270--280, 2006.

\bibitem{mahdizadeh2018new}
M~Mahdizadeh and Ehsan Zamanzade.
\newblock A new reliability measure in ranked set sampling.
\newblock {\em Statistical Papers}, 59(3):861--891, 2018.

\bibitem{mahdizadeh2018smooth}
M~Mahdizadeh and Ehsan Zamanzade.
\newblock Smooth estimation of a reliability function in ranked set sampling.
\newblock {\em Statistics}, 52(4):750--768, 2018.

\bibitem{makouei2021moments}
Roghaye Makouei, Hossein~Jabbari Khamnei, and Mahdi Salehi.
\newblock Moments of order statistics and k-record values arising from the
complementary beta distribution with application.
\newblock {\em Journal of Computational and Applied Mathematics}, 390:113386,
2021.

\bibitem{mcintyre2005method}
GA2149762 McIntyre.
\newblock A method for unbiased selective sampling, using ranked sets.
\newblock {\em The American Statistician}, 59(3):230--232, 2005.

\bibitem{riaz2016effective}
Muhammad Riaz, Rashid Mehmood, Nasir Abbas, and Saddam~Akber Abbasi.
\newblock On effective dual use of auxiliary information in variability control
charts.
\newblock {\em Quality and Reliability Engineering International},
32(4):1417--1443, 2016.

\bibitem{samawi2001estimation}
Hani~M Samawi and Omar~AM Al-Sagheer.
\newblock On the estimation of the distribution function using extreme and
median ranked set sampling.
\newblock {\em Biometrical Journal: Journal of Mathematical Methods in
Biosciences}, 43(3):357--373, 2001.

\bibitem{sengupta2008unbiased}
Samindranath Sengupta and Sujay Mukhuti.
\newblock Unbiased estimation of p (x> y) using ranked set sample data.
\newblock {\em Statistics}, 42(3):223--230, 2008.

\bibitem{takahasi1968unbiased}
Koiti Takahasi and Kazumasa Wakimoto.
\newblock On unbiased estimates of the population mean based on the sample
stratified by means of ordering.
\newblock {\em Annals of the institute of statistical mathematics},
20(1):1--31, 1968.

\bibitem{zamanzade2018estimating}
Ehsan Zamanzade and M~Mahdizadeh.
\newblock Estimating the population proportion in pair ranked set sampling with
application to air quality monitoring.
\newblock {\em Journal of Applied Statistics}, 45(3):426--437, 2018.
Published
2025-03-30
How to Cite
Ali Jaleel Najm, Jabbari Khamnei, H., & Somayeh Makouei. (2025). Estimating Stress-Strength Reliability in the Beta-Pareto Distribution Using Ranked Set Sampling. Statistics, Optimization & Information Computing. https://doi.org/10.19139/soic-2310-5070-2041
Section
Research Articles