Big Data in the Revolution of Medical Data: A Review
Keywords:
Big Data, Healthcare, Medical data, Artificial intelligence, Medical image
Abstract
Big Data plays a crucial role in the medical sector, fundamentally transforming the collection, organization, and interpretation of medical data. This shift significantly enhances healthcare quality, propels medical research, and improves healthcare system effectiveness. Medical Big Data comprises a vast and diverse array of health-related information, generated at an unprecedented scale and speed, including electronic health records, medical imaging, genomic data, clinical trials, and data from wearable devices. Analyzing this data can reveal vital insights into disease patterns, treatment effectiveness, and population health trends, thereby aiding in the creation of personalized medicine, predictive analysis, and innovative healthcare solutions. Effective utilization of Medical Big Data requires advanced computational and analytical methods to extract meaningful insights, thereby fueling progress in healthcare and medical research. This review aims to provide specialists with a comprehensive overview of Big Data's application in diagnostic and medical domains, including its current usage in healthcare. We particularly focus on how the integration of Big Data with artificial intelligence has led to more accurate predictive models for disease outbreaks and patient health risks, enhancing preventive care strategies. Furthermore, our analysis indicates that Big Data-driven personalization of treatment has significantly improved adherence to therapies and health outcomes in chronic disease management.
Published
2024-08-05
How to Cite
Azeroual, A., Nsiri, B., Oulad Haj Thami, R., & Belhoussine Drissi , T. (2024). Big Data in the Revolution of Medical Data: A Review. Statistics, Optimization & Information Computing. https://doi.org/10.19139/soic-2310-5070-2054
Issue
Section
Research Articles
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).