A novel technique for generating families of continuous distributions
Keywords:
New flexible-G, Generalized flexible-G, Family of distributions, Continuous distributions, Maximum likelihood estimation
Abstract
In this paper, we present the generalized flexible-G family for creating several continuous distributions. Our new technique features are that it adds only two extra shape parameters to any chosen continuous distribution and is not derived from any parent distribution that currently exists. Several special cases of this family are provided. The generalized flexible-G family offers significant improvements in flexibility, fit, and applicability across a wide range of fields. The family's model parameters are estimated using the maximum likelihood estimation method. A simulation study is conducted to assess the consistency of the maximum likelihood estimates. The generalized flexible log-logistic, a specific case of our novel family, is applied to both patient's analgesia and reliability data in order to illustrate the significance of the family. The generalized flexible log-logistic outperforms several competitive models provided in this paper. Furthermore, the generalized flexible log-logistic performs better than traditional distributions such as the BurrXII, Gumbel, and Weibull models.
Published
2024-07-29
How to Cite
Makubate, B., & Musekwa, R. R. (2024). A novel technique for generating families of continuous distributions. Statistics, Optimization & Information Computing, 12(5), 1231-1248. https://doi.org/10.19139/soic-2310-5070-2068
Issue
Section
Research Articles
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).