A Redundancy Allocation Model for Uncertainty Random Water Supply System in Water Saving Management Contract Projects
Keywords:
Water Supply System, Redundancy Allocation Problem, Uncertain Random Variable
Abstract
Water saving management contract (WSMC) projects provide advanced technology and management for a water supply system to achieve water conservation and set redundant components to ensure water supply reliability. Project managers focus on the reliability optimization problem and require redundancy allocation strategies of the above system. This paper presents an optimization method by dealing with the lifetime of the whole water supply system. Assuming the lifetimes of advanced components are uncertain variables and the old ones are random variables, a reliability optimization model of water supply systems is established based on chance theory, and the redundancy allocation solutions are obtained by an optimization toolkit. A WSMC case in Shenzhen, China is studied and the results show that the reliability of the water supply system has been in a high state based on the allocation strategy. This study provides theoretical support for improving water-saving safety and popularizing the WSMC service mechanism.
Published
2024-07-22
How to Cite
Zhang, Q., Teh, S. Y., & Sharon, C. P. Y. (2024). A Redundancy Allocation Model for Uncertainty Random Water Supply System in Water Saving Management Contract Projects. Statistics, Optimization & Information Computing, 12(5), 1513-1525. https://doi.org/10.19139/soic-2310-5070-2088
Issue
Section
Research Articles
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).