Interference-aware scheme to improve distributed caching in cellular networks via D2D underlay communications

Keywords: Stochastic Geometry, Cellular communications, Distributed Caching, Coverage probability, D2D

Abstract

Underlay Device-to-Device (D2D) communications is a promising networking technology intended to boost thespectral efficiency of future cellular networks, including 5G and beyond. When used for distributed caching, where cellulardevices store popular files for direct exchange later with other devices away from the cellular infrastructure, the technologybears more fruits such as enhancing throughput, reducing latency and offloading the infrastructure. However, due to theirnon-orthogonality, underlay D2D communications can result in excessive interference to the cellular user. To avoid thisproblem, the present article proposes a scheme with two interference-reduction elements: a guard zone intended to allowD2D communications only for devices far enough from the base station (BS), and a pairing strategy intended to allow D2Dpairing for only devices that are close enough to each other. We assess the performance of the scheme using a stochasticgeometry (SG) model, through which we characterize the coverage probability of the cellular user. This probability is aprincipal indicator of maintaining the quality of service (QoS) of the cellular user and of enabling successful caching for theD2D user. We introduce in the process a novel empirical technique which, given a desired level of interference, identifiesan upper bound for the distance between two devices to be paired without exceeding that level. We finally validate theanalytical findings obtained from the model by intensive simulation to ensure the correctness of both the model and thescheme performance. A salient feature of the scheme is that it requires for its implementation no software or hardwaremodification in the device

References

1. A. M. Bamhdi, “CDCA: Transparent Cache Architecture to Improve Content Delivery by Internet Service providers,” International
Journal of Advanced Computer Science and Applications, vol. 14, no. 10, pp. 847–867, 2023, doi:10.14569/IJACSA.2023.0141090.
2. E. Baccour, A. Erbad, A. Mohamed, M. Guizani, and M. Hamdi, “Collaborative Hierarchical Caching and Transcoding in
Edge Network with CE-D2D Communication,” Journal of Network and Computer Applications, vol. 172, p. 102801, 2020,
doi:10.1016/j.jnca.2020.102801.
3. N. Trabelsi, L. C. Fourati, and C. S. Chen, “Interference Management in 5G and Beyond Networks: A Comprehensive survey,”
Computer Networks, vol. 239, p. 110159, 2023, doi:10.1016/j.comnet.2023.110159.
4. C. Jarray and A. Giovanidis, “Successful File Transmission in Mobile D2D Networks with Caches,” Computer Networks, vol. 147,
pp. 162–179, 2018, doi:10.1016/j.comnet.2018.10.009.
5. X. Zhang, Y. Ren, T. Lv, and L. Hanzo, “Caching Scalable Videos in the Edge of Wireless Cellular Networks,” IEEE Network, vol. 37,
no. 3, pp. 34–42, 2022, doi:10.1109/MNET.107.2100461.
6. A. Mohamed, M. Hamed, and H. Nassar, “Effectiveness of Guard Zone in Mitigating Interference in D2D Underlaid Cellular
Networks,” Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications (JoWUA), vol. 14, no. 3,
pp. 112–124, 2023, doi:10.58346/JOWUA.2023.I3.021.
7. H. Nassar, G. Taher, and E. S. El hady, “Remarks on a Stochastic Geometric Model for Interference-Limited Cellular
Communication,” Indonesian Journal of Electrical Engineering and Computer Science, vol. Accepted for publication, 2024.
8. H. A. Mustafa, M. Z. Shakir, M. A. Imran, A. Imran, and R. Tafazolli, “Coverage Gain and Device-to-Device User
Density: Stochastic Geometry Modeling and Analysis,” IEEE Communications Letters, vol. 19, no. 10, pp. 1742–1745, 2015,
doi:10.1109/LCOMM.2015.2459677.
9. Y. Lin, H. Song, F. Ke, W. Yan, Z. Liu, and F. Cai, “Optimal Caching Scheme in D2D Networks with Multiple Robot Helpers,”
Computer Communications, vol. 181, pp. 132–142, 2022, doi:10.1016/j.comcom.2021.09.027.
10. G. Zhu, C. Guo, T. Zhang, and Y. Shao, “Mobility-aware Coded Caching in D2D Communication Networks,” Physical
Communication, vol. 58, p. 102049, 2023, doi:10.1016/j.phycom.2023.102049.
11. A. S. Rocha, B. A. Pinheiro, and V. C. Borges, “Secure D2D caching Framework inspired on trust Management and Blockchain for
Mobile Edge Caching,” Pervasive and Mobile Computing, vol. 77, p. 101481, 2021, doi:10.1016/j.pmcj.2021.101481.
12. Z. Chkirbene, R. Hamila, A. Erbad, S. Kiranyaz, and N. Al-Emadi, “D2DLive: Iterative live Video Streaming Algorithm for D2D
Networks,” Computer Networks, vol. 229, p. 109734, 2023, doi:10.1016/j.comnet.2023.109734.
13. S. A. A. Siahpoosh and F. Rezaei, “A Study on the Impact of Mobility on Caching in non-standalone 5G Vehicular Networks,”
Vehicular Communications, vol. 41, p. 100595, 2023, doi:10.1016/j.vehcom.2023.100595.
14. F. Ahmad, A. Ahmad, I. Hussain, G. Muhammad, Z. Uddin, and S. A. AlQahtani, “Proactive Caching in D2D Assisted Multitier
Cellular Network,” Sensors, vol. 22, no. 14, p. 5078, 2022, doi:10.3390/s22145078.
15. N. Abdolkhani, M. Eslami, J. Haghighat, and W. Hamouda, “Optimal Caching Policy for D2D Assisted Cellular Networks with
Different Cache Size Devices,” IEEE Access, vol. 10, pp. 99353–99360, 2022, doi:10.1109/ACCESS.2022.3206813.
16. A. Elsheikh, A. S. Ibrahim, and M. H. Ismail, “Sequence-to-Sequence Learning for Link-Scheduling in D2D Communication
Networks,” Journal of Network and Computer Applications, vol. 212, p. 103567, 2023, doi:10.1016/j.jnca.2022.103567.
17. I. Ioannou, C. Christophorou, V. Vassiliou, and A. Pitsillides, “A Novel Distributed AI Framework with ML for D2D Communication
in 5G/6G Networks,” Computer Networks, vol. 211, p. 108987, 2022, doi:10.1016/j.comnet.2022.108987.
18. G. Kou and G. Wei, “Hybrid Particle Swarm Optimization-based modeling of Wireless Sensor Network Coverage
Optimization,” International Journal of Advanced Computer Science and Applications, vol. 14, no. 5, pp. 982–991, 2023,
doi:10.14569/IJACSA.2023.01405102.
19. J. Zhou, “A Roadmap Towards Optimal Resource Allocation Approaches in the Internet of Things,” International Journal of
Advanced Computer Science and Applications, vol. 14, no. 6, pp. 1373–1383, 2023, doi:10.14569/IJACSA.2023.01406145.
20. Y. Sun, Y. Chen, Z. Wang, and Z. Liu, “Resource Allocation and Power Control Based on Noncooperative Game for D2D
Communications Underlaying Cellular Networks,” Wireless Personal Communications, vol. 124, no. 3, pp. 2723–2733, 2022,
doi:10.1007/s11277-022-09486-4.
21. V. Hakami, H. Barghi, S. Mostafavi, and Z. Arefinezhad, “A Resource Allocation Scheme for D2D Communications with Unknown
Channel State Information,” Peer-to-Peer Networking and Applications, vol. 15, no. 2, pp. 1189–1213, 2022, doi:10.1007/s12083-
021-01265-5.
22. M. Le, Q. V. Pham, H. C. Kim, and W. J. Hwang, “Enhanced Resource Allocation in D2D Communications with NOMA and
Unlicensed Spectrum,” IEEE Systems Journal, vol. 16, no. 2, pp. 2856–2866, 2022, doi:10.1109/JSYST.2021.3136208.
23. A. M. H. Alibraheemi, M. N. Hindia, K. Dimyati, T. F. T. M. N. Izam, J. Yahaya, F. Qamar, and Z. H. Abdullah, “A
Survey of Resource Management in D2D Communication for B5G Networks,” IEEE Access, vol. 11, pp. 7892–7923, 2023,
doi:10.1109/ACCESS.2023.3238799.
24. A. Elshrkasi, K. Dimyati, K. A. B. Ahmad, and M. F. bin Mohamed Said, “Enhancement of Cellular Networks via an Improved
Clustering Technique with D2D Communication for Mission-Critical Applications,” Journal of Network and Computer Applications,
vol. 206, p. 103482, 2022, doi:10.1016/j.jnca.2022.103482.
25. L. Zhu and Y. Sun, “Uplink Performance Analysis in D2D-enabled Cellular Networks with Clustered Users,” Wireless Networks,
vol. 28, pp. 319–330, 2022, doi:10.1007/s11276-021-02869-8.
26. M. K. Benbraika, O. Kraa, Y. Himeur, K. Telli, S. Atalla, and W. Mansoor, “Interference Management Based on Meta-Heuristic
Algorithms in 5G Device-to-Device Communications,” Computers, vol. 13, no. 2, p. 44, 2024, doi:10.3390/computers13020044.
27. G. A. Safdar and K. Ashfaq, “Uplink Resource Shared Interference Mitigation scheme forIn-band D2D Underlay 5G Networks,”
Available at SSRN, vol. preprint research paper, 2023.
28. X. Li, G. Chen, G. Wu, Z. Sun, and G. Chen, “D2D Communication Network Interference Coordination Scheme Based on Improved
Stackelberg,” Sustainability, vol. 15, no. 2, p. 961, 2023, doi:10.3390/su15020961.
29. A. Austine and R. S. Pramila, “Interference Management by Resource Exchange for D2D Communication in Cellular Network,”
International Journal of Recent Technology and Engineering, vol. 8, no. 5S, pp. 1–5, 2020, doi:10.35940/ijrte.E1001.0285S20.
30. N. R. Reddy, K. Kalaivani, K. N. Prasanthi, S. M. Azmal, and P. R. Teja, “Enhancing 5G networks with D2D Communication:
Architectures, Protocols, and Energy-Efficient Strategies for Future Smart Cities,” International Journal of Intelligent Systems and
Applications in Engineering, vol. 12, no. 10S, pp. 168–174, 2024.
31. K. Ziadi and R. Asvadi, “A Device-to-Device Direct Discovery Algorithm to Mitigate the Collision Caused by Hidden Users,”
Physical Communication, vol. 52, p. 101608, 2022, doi:10.1016/j.phycom.2022.101608.
32. X. Lin, J. G. Andrews, and A. Ghosh, “Spectrum Sharing for Device-to-Device Communication in Cellular Networks,” IEEE
Transactions on Wireless Communications, vol. 13, no. 12, pp. 6727–6740, 2014, doi:10.1109/TWC.2014.2360202.
33. H. Nassar, G. Taher, and E. El-Hady, “Stochastic geometric modelling and simulation of cellular systems for coverage probability
characterization,” ArXiv, 2021, doi: 10.48550/arXiv.2109.14063.
Published
2024-07-24
How to Cite
Eleff, A., Mousa, M., & Nassar, H. (2024). Interference-aware scheme to improve distributed caching in cellular networks via D2D underlay communications. Statistics, Optimization & Information Computing, 12(6), 1873-1885. https://doi.org/10.19139/soic-2310-5070-2094
Section
Research Articles