Optimization of the K-Nearest Neighbor Algorithm to Predict Bank Churn
Keywords:
Bank Churn, K-Nearest Neighbors, Random Forests, Optimization, Logistic Regression, Machine Learning
Abstract
Bank churn occurs when customers switch from one bank to another. Although some customer loss is unavoidable, it is important for banks to avoid voluntary churn as it is easier and cheaper to keep an existing customer than to gain a new one. In our paper, we train and optimize a machine learning algorithm, specifically a k-nearest neighbors algorithm, to predict whether or not a customer will leave their bank using existing demographic and financial information. Bygiving banks a reliable method for predicting whether or not a customer will churn, they can prioritize certain groups in an effort to increase retention rates. We compare the accuracy of our algorithm to other types of machine learning algorithms, such as random forest and logistic regression models, and increase the accuracy of the k-nearest neighbor algorithm by optimizing the k value used in our model, as well as utilizing 10-folds cross-validation. We determine the most important attributes and weight them appropriately. After optimizing this model, we are able to predict with 85.72% accuracy whether or not the customer will churn.
Published
2024-07-10
How to Cite
Akakpo, S., Dambra, P., Paz, R., Smyth, T., Torre, F., & Yu, C. (2024). Optimization of the K-Nearest Neighbor Algorithm to Predict Bank Churn. Statistics, Optimization & Information Computing, 12(5), 1397-1408. https://doi.org/10.19139/soic-2310-5070-2098
Issue
Section
Research Articles
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).