On Rainbow Vertex Antimagic Coloring of Related Prism Graphs and Its Operations

  • Rafiantika Prihandini University of Jember
  • Evi Tri Wulandari
  • Dafik
  • Arika Indah Kristiana
  • Robiatul Adawiyah
  • Ridho Alfarisi
Keywords: Rainbow vertex antimagic coloring, Rainbow vertex antimagic connection number, Related prism graph

Abstract

Let $G=(V,E)$ be a simple, connected and un-directed graph, for $f:E(G)\rightarrow\{1,2,\dots, |E(G)|\}$, the weight of a vertex $v\in V(G)$ under $f$ is $w_f(v)=\Sigma_{e \in E(v)} f(e)$, where $E(v)$ is the set of vertices incident to $v$. The function $f$ is called vertex antimagic edge labeling if every vertex has distinct weight. While, rainbow vertex coloring is a coloring of graph vertices where each vertex on the graph is connected by a path that all internal vertices on the $u-v$ path have different colors. We introduce a new notion, namely a rainbow vertex antimagic coloring, which is a combination of antimagic labeling and rainbow vertex coloring. The rainbow vertex antimagic connection number of $G$, denoted by $rvac(G)$, is the smallest number of colors taken over all rainbow colorings induced by rainbow vertex antimagic labelings of $G$.  In this paper we aim to discover some new lemmas or theorems regarding to $rvac(G)$.

References

Chartrand, G., G. L. Johns., K. A. Mckeon., and P. Zhang. 2008. Rainbow connection in graphs. \textit{Math. Bohemica}. 133:85-98.
Kanna, M. R. R., R. P. Kumar., and R. Jagadeesh. 2016. Computation of Topological Indices of Dutch Windmill Graph. \textit{Journal of Discrete Mathematics}. 6:74-81.
Krivelevich, M. and R. Yuster. 2009. The Rainbow Connection of Graph is (at most) Reciprocal to Its Minimum Degree. \textit{IWOCA}. 5874:432-437.
Li, X. and S. Liu. 2011. Rainbow vertex-connection number of 2-connected graphs. arXiv:1110.5770v1 \textit{[math.CO]}.
Marsidi., I. H. Agustin., Dafik., and E. Y. Kurniawati. 2021. \textit{On Rainbow Vertex Antimagic Coloring of Graphs : A New Notion}. CAUCHY. 7(1):64-72.
Nugroho, D. B. 2008. \textit{Catatan Kuliah (2 SKS) MX 324 Pengantar Teori Graf}. Universitas Kristen Satya Wacana.
Slamin. 2001. \textit{Diregularity of Digrophs Close to Moore Bound}, Ph. C. Stud. Thesis. The University of Newcastle. Australia.
Slamin. 2009. \textit{Desain Jaringan: Pendekatan Teori Graf}. Jember:Universitas Jember.
Published
2024-09-07
How to Cite
Prihandini, R., Wulandari, E. T., Dafik, Kristiana, A. I., Adawiyah, R., & Alfarisi, R. (2024). On Rainbow Vertex Antimagic Coloring of Related Prism Graphs and Its Operations. Statistics, Optimization & Information Computing. https://doi.org/10.19139/soic-2310-5070-2140
Section
Research Articles

Most read articles by the same author(s)