A Robust Algorithm for Asymmetric Cryptography Using Rainbow Vertex Antimagic Coloring

  • kiswara Agung santoso University of Jember
  • Indah Lutfiyatul Mursyidah University of Jember
  • Ika Hesti Agustin University of Jember
  • Dafik Dafik University of Jember
  • Swaminathan Venkatraman AI & CS Laboratory, School of Arts, Sciences, Humanities and Education, SASTRA Deemed University, Thanjavur, Tamil Nadu
  • Venkatachalam Venkatachalam PG and Research Department of Mathematics,Kongunadu Arts and Science College
Keywords: Rainbow vertex antimagic coloring, Secret sharing scheme, Asymmetric cryptography.

Abstract

Cryptography plays a crucial role in securing information and communications in the face of advancing technologies. Asymmetric encryption, also known as public-key cryptography, plays a crucial role in cryptography. Unlike symmetric encryption, which uses a single key for both encryption and decryption, asymmetric encryption involves a pair of keys, namely a public key and a private key. Asymmetric cryptography is closely associated with the secure management of keys, addresses, and transactions within the blockchain ecosystem, especially in cryptocurrency platform. In this study,we present a novel concept known as rainbow vertex antimagic coloring. This concept extends the idea of rainbow vertex coloring by incorporating antimagic labeling. Let f : E(G) → {1, 2, . . . , |E(G)|} be a function, where the weight of a vertex v ∈ V (G) with respect to f is defined as wf (v) = Σe∈E(v) f(e). Here, E(v) denotes the set of edges incident to v. Thefunction f is termed a vertex antimagic edge labeling if it assigns distinct weights to each vertex. A path is termed a rainbow path if, for any vertices u and v, all internal vertices on the u − v path have distinct weights. The rainbow vertexantimagic connection number of a graph G, denoted by rvac(G), is defined as the minimum number of colors requiredin any rainbow coloring derived from rainbow vertex antimagic labelings of G. In this paper, we will obtain some newlemmas or theorems concerning rvac(G), and we will implement the obtained lemmas or theorems of RVAC on asymmetric cryptography technique.

References

Ahmad, A., Ali, K., Baˇca, M., Kov´aˇr, P., & Feˇnovˇc´ıkov´a, A. S. Vertex-antimagic labelings of regular graphs. Acta. Math. Sin.-English
Ser. 28, 1865–1874 (2012). https://doi.org/10.1007/s10114-012-1018-y

Akadji, A. F., Katili, M. R., Nasib, S. K., & Yahya, N. I. Rainbow vertex connection number and strong rainbow vertex connection
number on slinky graph (SlnC4)). Desimal, Journal of Mathematics. 4 (2) ,(2021). https://doi.org/10.24042/djm.v4i2.7276

Arumugam, S., Miller, M., Phanalasy, O., & Ryan, J. Antimagic labeling of generalized pyramid graphs. Acta. Math. Sin.-English
Ser. 30, 283–290 (2014). https://doi.org/10.1007/s10114-014-2381-7

Chang, F., Liang, Y. C., Pan, Z., & Zhu, X. 2015. Antimagic Labeling of Regular Graphs. Journal of Graph Theory. 82 (4), pp.
339-349. https://doi.org/10.1002/jgt.21905

Fauziah, D. A., Dafik, Agustin, I. H., & Alfarisi, R. (2019). The rainbow vertex connection number of edge corona product graphs.
IOP Conf. Ser.: Earth Environ. Sci. 243 012020. doi:10.1088/1755-1315/243/1/012020

Heggernes, P., Issac, D., Lauri, J., Lima, P. T., & Leeuwen, E. J. Rainbow Vertex Coloring Bipartite Graphs and Chordal
Graphs. 43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018). 1-13 (2018).
https://doi.org/10.4230/LIPIcs.MFCS.2018.83

Santoso, K. A., Dafik, Agustin, I. H., Prihandini, R. M.,Alfarisi, R. (2019). Vertex colouring using the adjacency matrix. Journal of Physics: Conference Series, 1211(1). https://doi.org/10.1088/1742-6596/1211/1/012019

Kristiana. A. I., I. L. Mursyidah, Dafik, R. Adawiyah, & R. Alfarisi. 2022. Local irregular vertex coloring of comb product by path
graph and star graph. Discreate Mathematics, Algorithms and Applications. https://doi.org/10.1142/S1793830922501488

Krivelevich. M. & Yuster, R. 2010. The rainbow connection of a graph is (at most) reciprocal to its minimum degree. J. Graph Theory.
63 pp 185–191

Li, X. & Shi,Y. On the Rainbow Vertex-Connection. Discussiones Mathematicae Graph Theory,33(2) 307-313 (2013).
https://doi.org/10.7151/dmgt.1664

11.Liang, Y. C. & Zhu, X. Antimagic Labeling of Cubic Graphs. Journal of Graph Theory. 75(1). 31-36 (2014)
https://doi.org/10.1002/jgt.21718

Lima, P. T., Leeuwen, E. J., & Wegen, M. Algorithms for the rainbow vertex coloring problem on graph classes. Theoretical Computer
Science, 887, 122-142 (2021). https://doi.org/10.1016/j.tcs.2021.07.009.

Santoso, K. A., Fatmawati, Suprajitno, H. (2018). On Max-Plus Algebra and Its Application on Image Steganography. Scientific World Journal, 2018. https://doi.org/10.1155/2018/6718653

Marsidi, Agustin, I. H., Dafik, Kurniawati, E. Y., & Nisviasari, R. 2022. The rainbow vertex antimagic coloring of tree graphs. J.
Phys.: Conf. Ser. 2157. 012019, pp. 1-8. doi:10.1088/1742-6596/2157/1/012019

Mursyidah I. L., Dafik, & A. I. Kristiana. 2023. On Rainbow Antimagic Coloring of Some Classes of Graphs. Advances in Physics
Research Proceedings of the 6th International Conference of Combinatorics, Graph Theory, and Network Topology (ICCGANT 2022).
pp. 73-93. https://doi.org/10.2991/978-94-6463-138-8 8

Dafik, Mursyidah, I. L., Agustin, I. H., Baihaki, R. I., Febrinanto, F. G., Husain, S., Binti, S. K., & Sunder, R. 2024. On Rainbow
Vertex Antimagic Coloring and Its Application on STGNN Time Series Forecasting on Subsidized Diesel Consumption. IAENG
International Journal of Applied Mathematics, 54(5).

Simamora, D. N. S.& Salman, A. N. M. The Rainbow (Vertex) Connection Number of Pencil Graphs. Procedia Computer Science.
74 138-142 (2015). https://doi.org/10.1016/j.procs.2015.12.089

Mohamad, M. S. A., Din, R., & Ahmad, J. I. (2021). Research trends review on RSA scheme of asymmetric cryptography techniques.
Bulletin of Electrical Engineering and Informatics, 10(1), 487-492.

Santoso, K. A., Fakih, M. F., Kamsyakawuni, A. (2024). Text Insertion and Encryption Using The Bit-Swapping Method in Digital Images. Journal of Applied Informatics and Computing, 8(1), 86–90. https://doi.org/10.30871/jaic.v8i1.7395

Abroshan, H. (2021). A hybrid encryption solution to improve cloud computing security using symmetric and asymmetric
cryptography algorithms. International Journal of Advanced Computer Science and Applications, 12(6), 31-37.
Published
2025-01-26
How to Cite
santoso, kiswara A., Mursyidah, I. L., Agustin, I. H., Dafik, D., Venkatraman, S., & Venkatachalam, V. (2025). A Robust Algorithm for Asymmetric Cryptography Using Rainbow Vertex Antimagic Coloring. Statistics, Optimization & Information Computing. https://doi.org/10.19139/soic-2310-5070-2185
Section
Research Articles

Most read articles by the same author(s)