A Generalized Backstepping Controller Design for a Second-Order Magnetic Levitation System
Abstract
This research tackles the control design challenge of stabilizing a second-order magnetic levitation system using a nonlinear control approach. The proposed controller is rooted in backstepping control theory, which ensures the asymptotic convergence of the system’s incremental state variables to the origin through a Lyapunov-based framework. A key advantage of this method is the generalized control input, expressed in a polynomial form with four adjustable control gains, allowing for precise tuning to achieve the desired dynamic performance. A major contribution of this study is the formal demonstration of stable performance provided by the generalized controller in second-order dynamic systems, with a particular emphasis on its application to magnetic levitation. Numerical simulations in Matlab/Simulink showcase the controller’s effectiveness across three different sets of control gains, enabling the system to realize critically damped, overdamped, and underdamped dynamic responses with respect to the desired position of the levitated metallic mass.
Published
2024-10-31
How to Cite
Montoya Giraldo, O. D., Gil-González, W., & Jaramillo-Matta, A. (2024). A Generalized Backstepping Controller Design for a Second-Order Magnetic Levitation System. Statistics, Optimization & Information Computing. https://doi.org/10.19139/soic-2310-5070-2205
Issue
Section
Research Articles
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).