Evaluation of Transformer-Based Large Language Models for Email Spam Detection Using BERT, Phi, and Gemma

  • Ana Clara C. Grassmann São Paulo State University - UNESP
  • Juliana C. Feitosa São Paulo State University - UNESP
  • José Remo F. Brega São Paulo State University - UNESP
  • Kelton A. P. da Costa São Paulo State University - UNESP
Keywords: Large Language Models, Spam Detection, Fine-Tuning, Binary Classification, Cybersecurity

Abstract

In this paper, we study how LLMs based on the transformer architecture work and the possibility of adjusting these models to use only the body of email messages to classify them as spam or ham. The models studied are BERT, Gemma, and Phi. All of them underwent quantization stages, fine-tuning with a real dataset, and evaluation with metrics commonly used in binary classification problems. The Gemma model achieves over 99% accuracy in detecting spam, standing out as the best among the compared models.

References

1. Gemma Team, T. Mesnard, C. Hardin, R. Dadashi, S. Bhupatiraju, L. Sifre, M. Rivi` ere, M. S. Kale, J. Love, P. Tafti, L. Hussenot, et
al., Gemma, Kaggle, 2024. Available at: https://www.kaggle.com/m/3301.
2. M. Javaheripi, and S. Bubeck, Phi-2: The surprising power of small language models, Published online,
December 12, 2023. Accessed June 10, 2024. Available at: https://www.microsoft.com/en-us/research/blog/
phi-2-the-surprising-power-of-small-language-models/.
3. S. Gunasekar, Y. Zhang, J. Aneja, C. Cesar, T. Mendes, A. Del Giorno, S. Gopi, M. Javaheripi, P. Kauffmann, G. de Rosa, O.
Saarikivi, A. Salim, S. Shah, H. S. Behl, X. Wang, S. Bubeck, R. Eldan, A. T. Kalai, Y. T. Lee, Y. Li, Textbooks are all you
need, Published online, June 2023. Available at: https://www.microsoft.com/en-us/research/publication/
textbooks-are-all-you-need/.
4. T. Dettmers, A. Pagnoni, A. Holtzman, and L. Zettlemoyer, QLoRA: Efficient Finetuning of Quantized LLMs, arXiv preprint,
arXiv:2305.14314, 2023.
5. E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, and W. Chen, LoRA: Low-Rank Adaptation of Large Language
Models, arXiv preprint, arXiv:2106.09685, 2021.
6. P. Singhvi, Spam Email Classification Dataset, Kaggle, 2023. Available at: https://www.kaggle.com/datasets/
purusinghvi/email-spam-classification-dataset.
7. V. Metsis, I. Androutsopoulos, and G. Paliouras, Enron-Spam Datasets, Published online, 2006. Available at: https://www2.
aueb.gr/users/ion/data/enron-spam/readme.txt.
8. G. V. Cormack, and T. R. Lynam, TREC 2007 Public Corpus, University of Waterloo, 2007. Available at: https://plg.
uwaterloo.ca/˜gvcormac/treccorpus07/about.html.
9. Google, Google Colaboratory - Perguntas frequentes, Published online, 2024. Accessed March 17, 2024. Available at: https:
//research.google.com/colaboratory/intl/pt-BR/faq.html.
10. HuggingFace, Hugging Face - Quantization Guide, Published online, 2024. Accessed June 10, 2024. Available at: https:
//huggingface.co/docs/peft/v0.11.0/en/developer_guides/quantization.
11. S. Talebi, QLoRA — How to Fine-Tune an LLM on a Single GPU, Published
online, 2024. Accessed July 2, 2024. Available at: https://towardsdatascience.com/
qlora-how-to-fine-tune-an-llm-on-a-single-gpu-4e44d6b5be32.
12. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J.
Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, Scikit-learn: Machine Learning in Python, Journal
of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.
13. Y. Wu, S. Si, Y. Zhang, J. Gu, and J. Wosik, Evaluating the Performance of ChatGPT for Spam Email Detection, arXiv preprint,
arXiv:2402.15537, 2024.
14. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin, Attention Is All You Need,
arXiv preprint, arXiv:1706.03762, 2023.
15. J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, BERT: Pre-training of Deep Bidirectional Transformers for Language
Understanding, arXiv preprint, arXiv:1810.04805, 2019.
16. Gmail, Gmail Tweet, October 26, 2018. Accessed May 31, 2024. Available at: https://x.com/gmail/status/
1055806807174725633.
17. R. Broadhurst, and H. Trivedi, Malware in spam email: Risks and trends in the Australian Spam Intelligence Database, Trends and
Issues in Crime and Criminal Justice, Australian Institute of Criminology, Barton, ACT, no. 603, 2020. DOI: 10.52922/ti04657.
18. M. Alazab, and R. Broadhurst, Spam and criminal activity, Trends and Issues in Crime and Criminal Justice, Australian Institute of
Criminology, Barton, ACT, no. 526, 2016. DOI: 10.1007/978-3-319-32824-9 13.
19. ITU, Measuring digital development Facts and Figures 2023, ITU Publications, International Telecommunication
Union Development Sector, Geneva, 2023. Available at: https://www.itu.int/hub/publication/d-ind-ict_
mdd-2023-1/.
20. P. Graham, A Plan for Spam, Published online, 2002. Accessed June 11, 2024. Available at: https://paulgraham.com/
spam.html.
21. N. Kumaran, Understanding Gmail’s spam filters, Google, May 27, 2022. Accessed June 11, 2024. Available at: https:
//workspace.google.com/blog/identity-and-security/an-overview-of-gmails-spam-filters.
Stat., Optim. Inf. Comput. Vol. x, Month 202x
22. H. Naveed, A. U. Khan, S. Qiu, M. Saqib, S. Anwar, M. Usman, N. Akhtar, N. Barnes, and A. Mian, A Comprehensive Overview of
Large Language Models, arXiv preprint, arXiv:2307.06435, 2024.
23. S. Ruder, M. E. Peters, S. Swayamdipta, and T. Wolf, Transfer Learning in Natural Language Processing, in Proceedings of the
2019 Conference of the North American Chapter of the Association for Computational Linguistics: Tutorials, A. Sarkar, and M.
Strube, Eds., Association for Computational Linguistics, Minneapolis, Minnesota, pp. 15–18, 2019. DOI: 10.18653/v1/N19-5004.
Published
2024-12-26
How to Cite
C. Grassmann, A. C., C. Feitosa, J., F. Brega, J. R., & A. P. da Costa, K. (2024). Evaluation of Transformer-Based Large Language Models for Email Spam Detection Using BERT, Phi, and Gemma. Statistics, Optimization & Information Computing, 13(2), 459-473. https://doi.org/10.19139/soic-2310-5070-2267
Section
Research Articles