Optimal control analysis of a tuberculosis model with drug-resistant population
Keywords:
Mathematical Model, Stability, Optimal Control, Tuberculosis, Drug-sensitive Tuberculosis, Drug-resistant Tuberculosis
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis, stands as one of the most infectious diseases globally, predominantly affecting the lungs (known as pulmonary tuberculosis). It manifests in two primary forms based on bacterial drug sensitivity: drug-sensitive TB (DS-TB) and drug-resistant TB (DR-TB). DS-TB remains susceptible to medication, whereas DR-TB has developed resistance. This study explores a mathematical model explaining the spread of tuberculosis within a drug-resistant population, proposing optimal control strategies to curb its dissemination through educational initiatives and enhancements in healthcare facilities. The stability analysis reveals that disease-free equilibrium points are locally asymptotically stable when R_0 < 1, while endemic equilibrium points prevail and are locally asymptotically stable if R_0 > 1. Additionally, sensitivity analysis identifies important parameters within the model. By using the Pontryagin Maximum Principle, control variables are integrated and numerically solved. Through simulations and cost assessments, we illustrate the efficacy of employing both control strategies concurrently, effectively reducing the populations susceptible to exposure, DS-TB, and DR-TB infections.References
\bibitem{1}
\newblock A. Talwar, C. A. Tsang, S. F. Price, et al.,
\newblock \emph{Tuberculosis — United States 2018},
\newblock MMWR Morb Mortal Wkly Rep, vol. 68, pp. 257--262, 2019.
\bibitem{2}
\newblock L. Luies, and I. du Preez,
\newblock \emph{The echo of pulmonary tuberculosis: mechanisms of clinical symptoms and other disease-induced systemic complications},
\newblock Clin Microbiol Rev, vol. 33, no. 4, pp. e00036--20, 2020.
\bibitem{3}
\newblock M. Farhat, H. Cox, M. Ghanem, et al.,
\newblock \emph{Drug-resistant tuberculosis: a persistent global health concern},
\newblock Nat Rev Microbiol, vol. 22, pp. 617--635, 2024.
\bibitem{4}
\newblock Y. Wu, M. Huang, X. Wang, Y. Li, L. Jiang, Y. Yuan,
\newblock \emph{The prevention and control of tuberculosis: an analysis based on a tuberculosis dynamic model derived from the cases of Americans},
\newblock BMC Public Health, vol. 20, no. 1, pp. 1173, 2020.
\bibitem{5}
\newblock C. T. Sreeramareddy, H. N. H. Kumar, J. T. Arokiasamy,
\newblock \emph{Prevalence of self-reported tuberculosis, knowledge about tuberculosis transmission and its determinants among adults in India : results from a nation-wide cross-sectional household survey},
\newblock BMC Infect Dis, vol. 13, pp. 16, 2013.
\bibitem{5a}
\newblock Fatmawati, U. D. Purwati, M. I. Utoyo, C. Alfiniyah, Y. Prihartini,
\newblock \emph{The dynamics of tuberculosis transmission with optimal control analysis in Indonesia},
\newblock Commun Math Biol Neurosci, vol. 2020, no. 25, pp. 1--17, 2020.
\bibitem{6}
\newblock F. B. Agusto, J. Cook, P. D. Shelton, M. G. Wickers,
\newblock \emph{Mathematical model of MDR-TB and XDR-TB with isolation and lost to follow-Up},
\newblock Abstract and Applied Analysis, vol. 2015, pp. 1--21, 2015.
\bibitem{7}
\newblock D. Gao, and N. J. Huang,
\newblock \emph{Optimal control analysis of a tuberculosis model},
\newblock Applied Mathematical Modelling, vol. 58, pp. 47--64, 2018.
\bibitem{8}
\newblock E. M. Rocha, C. J. Silva, D. F. M. Torres,
\newblock \emph{The effect of immigrant communities coming from higher incidence tuberculosis regions to a host country},
\newblock Ricerche mat, vol. 67, pp. 89--112, 2018.
\bibitem{9}
\newblock D. K. Das, S. Khajanchi, T. K. Kar,
\newblock \emph{The impact of the media awareness and optimal strategy on the prevalence of tuberculosis},
\newblock Applied Mathematics and Computation, vol. 366, pp. 124732, 2020.
\bibitem{10}
\newblock D. K. Das, S. Khajanchi, T. K. Kar,
\newblock \emph{Transmission dynamics of tuberculosis with multiple re-infections},
\newblock Chaos, Solitons and Fractals, vol. 130, pp. 109450, 2020.
\bibitem{11}
\newblock I. A. Baba, and R. A. Abdulkadir,
\newblock \emph{Analysis of tuberculosis model with saturated incidence rate and optimal control},
\newblock Physica A, vol. 540, pp. 123237, 2020.
\bibitem{12}
\newblock S. Ullah, O. Ullah, M. A. Khan, T. Gul,
\newblock \emph{Optimal control analysis of tuberculosis (TB) with vaccination and treatment},
\newblock The European Physical Journal Plus, vol. 135, pp. 602, 2020.
\bibitem{13}
\newblock S. Liu, Y. Bi, Y. Liu,
\newblock \emph{Modeling and dynamic analysis of tuberculosis in mainland China from 1998 to 2017: The effect of DOTS strategy and further control},
\newblock Theoretical Biology and Medical Modelling, vol. 17, pp. 6, 2020.
\bibitem{14}
\newblock P. van den Driessche, and J. Watmough,
\newblock \emph{Reproduction number and sub-threshold endemic equilibria for compartmental models of disease transmission},
\newblock Mathematical Biosciences, vol. 180, pp. 29--48, 2002.
\bibitem{14a}
\newblock A. Kamput, and C. Dechsupa,
\newblock \emph{Formal modelling and verification of the traffic light control system design with time-automata},
\newblock Proceedings of the International MultiConference of Engineers and Computer Scientists. Lecture Notes in Engineering and Computer Science. IMEC 2023.
\bibitem{15}
\newblock S. Ullah, M. A. Khan, M. Farooq, T. Gul,
\newblock \emph{Modeling and analysis of Tuberculosis (TB) in Khyber Pakhtunkhwa Pakistan},
\newblock Mathematics and Computers in Simulation, vol. 165, pp. 181--199, 2019.
\bibitem{16}
\newblock K. O. Okosun, and O. D. Makinde,
\newblock \emph{A co-infection model of malaria and cholera diseases with optimal control},
\newblock Mathematical Biosciences, vol. 258, pp. 19--32, 2014.
\bibitem{17}
\newblock K. O. Okosun,
\newblock \emph{Optimal control analysis of hepatitis C virus with acute and chronic stages in the presence of treatment and infected immigrants},
\newblock International Journal of Biomathematics, vol. 7, no. 2, pp. 1450019, 2014.
\bibitem{18}
\newblock G. T. Tilahun, O. D. Makinde, D. Malonza,
\newblock \emph{Co-dynamics of pneumonia and typhoid fever diseases with cost effective optimal control analysis},
\newblock Applied Mathematics and Computation, vol. 316, pp. 438--459, 2018.
\bibitem{19}
\newblock L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, E. F. Mishechenko,
\newblock \emph{The mathematical theory of optimal processes},
\newblock New York/London. John Wiley and Sons; 1962.
\bibitem{19a}
\newblock M. Farman, C. Alfiniyah, A. Shehzad,
\newblock \emph{Modelling and analysis tuberculosis (TB) model with hybrid fractional operator},
\newblock Alexandria Engineering Journal, vol. 72, pp. 463--478, 2023.
\bibitem{20}
\newblock E. Idriss, E. El-Hassan, T. Mouhcine,
\newblock \emph{Global existence of weak solutions to a three-dimensional fractional model in magneto-elastic interactions},
\newblock Boundary Value Problems, vol. 2017, pp. 122, 2017.
\bibitem{21}
\newblock S. Panda, S. Palei, M. V. S. Samartha, B. Jena, S. Saxena,,
\newblock \emph{A Machine Learning Approach for Risk Prediction of Cardiovascular Disease},
\newblock Communications in Computer and Information Science, vol. 2010. Springer, 2024.
\newblock A. Talwar, C. A. Tsang, S. F. Price, et al.,
\newblock \emph{Tuberculosis — United States 2018},
\newblock MMWR Morb Mortal Wkly Rep, vol. 68, pp. 257--262, 2019.
\bibitem{2}
\newblock L. Luies, and I. du Preez,
\newblock \emph{The echo of pulmonary tuberculosis: mechanisms of clinical symptoms and other disease-induced systemic complications},
\newblock Clin Microbiol Rev, vol. 33, no. 4, pp. e00036--20, 2020.
\bibitem{3}
\newblock M. Farhat, H. Cox, M. Ghanem, et al.,
\newblock \emph{Drug-resistant tuberculosis: a persistent global health concern},
\newblock Nat Rev Microbiol, vol. 22, pp. 617--635, 2024.
\bibitem{4}
\newblock Y. Wu, M. Huang, X. Wang, Y. Li, L. Jiang, Y. Yuan,
\newblock \emph{The prevention and control of tuberculosis: an analysis based on a tuberculosis dynamic model derived from the cases of Americans},
\newblock BMC Public Health, vol. 20, no. 1, pp. 1173, 2020.
\bibitem{5}
\newblock C. T. Sreeramareddy, H. N. H. Kumar, J. T. Arokiasamy,
\newblock \emph{Prevalence of self-reported tuberculosis, knowledge about tuberculosis transmission and its determinants among adults in India : results from a nation-wide cross-sectional household survey},
\newblock BMC Infect Dis, vol. 13, pp. 16, 2013.
\bibitem{5a}
\newblock Fatmawati, U. D. Purwati, M. I. Utoyo, C. Alfiniyah, Y. Prihartini,
\newblock \emph{The dynamics of tuberculosis transmission with optimal control analysis in Indonesia},
\newblock Commun Math Biol Neurosci, vol. 2020, no. 25, pp. 1--17, 2020.
\bibitem{6}
\newblock F. B. Agusto, J. Cook, P. D. Shelton, M. G. Wickers,
\newblock \emph{Mathematical model of MDR-TB and XDR-TB with isolation and lost to follow-Up},
\newblock Abstract and Applied Analysis, vol. 2015, pp. 1--21, 2015.
\bibitem{7}
\newblock D. Gao, and N. J. Huang,
\newblock \emph{Optimal control analysis of a tuberculosis model},
\newblock Applied Mathematical Modelling, vol. 58, pp. 47--64, 2018.
\bibitem{8}
\newblock E. M. Rocha, C. J. Silva, D. F. M. Torres,
\newblock \emph{The effect of immigrant communities coming from higher incidence tuberculosis regions to a host country},
\newblock Ricerche mat, vol. 67, pp. 89--112, 2018.
\bibitem{9}
\newblock D. K. Das, S. Khajanchi, T. K. Kar,
\newblock \emph{The impact of the media awareness and optimal strategy on the prevalence of tuberculosis},
\newblock Applied Mathematics and Computation, vol. 366, pp. 124732, 2020.
\bibitem{10}
\newblock D. K. Das, S. Khajanchi, T. K. Kar,
\newblock \emph{Transmission dynamics of tuberculosis with multiple re-infections},
\newblock Chaos, Solitons and Fractals, vol. 130, pp. 109450, 2020.
\bibitem{11}
\newblock I. A. Baba, and R. A. Abdulkadir,
\newblock \emph{Analysis of tuberculosis model with saturated incidence rate and optimal control},
\newblock Physica A, vol. 540, pp. 123237, 2020.
\bibitem{12}
\newblock S. Ullah, O. Ullah, M. A. Khan, T. Gul,
\newblock \emph{Optimal control analysis of tuberculosis (TB) with vaccination and treatment},
\newblock The European Physical Journal Plus, vol. 135, pp. 602, 2020.
\bibitem{13}
\newblock S. Liu, Y. Bi, Y. Liu,
\newblock \emph{Modeling and dynamic analysis of tuberculosis in mainland China from 1998 to 2017: The effect of DOTS strategy and further control},
\newblock Theoretical Biology and Medical Modelling, vol. 17, pp. 6, 2020.
\bibitem{14}
\newblock P. van den Driessche, and J. Watmough,
\newblock \emph{Reproduction number and sub-threshold endemic equilibria for compartmental models of disease transmission},
\newblock Mathematical Biosciences, vol. 180, pp. 29--48, 2002.
\bibitem{14a}
\newblock A. Kamput, and C. Dechsupa,
\newblock \emph{Formal modelling and verification of the traffic light control system design with time-automata},
\newblock Proceedings of the International MultiConference of Engineers and Computer Scientists. Lecture Notes in Engineering and Computer Science. IMEC 2023.
\bibitem{15}
\newblock S. Ullah, M. A. Khan, M. Farooq, T. Gul,
\newblock \emph{Modeling and analysis of Tuberculosis (TB) in Khyber Pakhtunkhwa Pakistan},
\newblock Mathematics and Computers in Simulation, vol. 165, pp. 181--199, 2019.
\bibitem{16}
\newblock K. O. Okosun, and O. D. Makinde,
\newblock \emph{A co-infection model of malaria and cholera diseases with optimal control},
\newblock Mathematical Biosciences, vol. 258, pp. 19--32, 2014.
\bibitem{17}
\newblock K. O. Okosun,
\newblock \emph{Optimal control analysis of hepatitis C virus with acute and chronic stages in the presence of treatment and infected immigrants},
\newblock International Journal of Biomathematics, vol. 7, no. 2, pp. 1450019, 2014.
\bibitem{18}
\newblock G. T. Tilahun, O. D. Makinde, D. Malonza,
\newblock \emph{Co-dynamics of pneumonia and typhoid fever diseases with cost effective optimal control analysis},
\newblock Applied Mathematics and Computation, vol. 316, pp. 438--459, 2018.
\bibitem{19}
\newblock L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, E. F. Mishechenko,
\newblock \emph{The mathematical theory of optimal processes},
\newblock New York/London. John Wiley and Sons; 1962.
\bibitem{19a}
\newblock M. Farman, C. Alfiniyah, A. Shehzad,
\newblock \emph{Modelling and analysis tuberculosis (TB) model with hybrid fractional operator},
\newblock Alexandria Engineering Journal, vol. 72, pp. 463--478, 2023.
\bibitem{20}
\newblock E. Idriss, E. El-Hassan, T. Mouhcine,
\newblock \emph{Global existence of weak solutions to a three-dimensional fractional model in magneto-elastic interactions},
\newblock Boundary Value Problems, vol. 2017, pp. 122, 2017.
\bibitem{21}
\newblock S. Panda, S. Palei, M. V. S. Samartha, B. Jena, S. Saxena,,
\newblock \emph{A Machine Learning Approach for Risk Prediction of Cardiovascular Disease},
\newblock Communications in Computer and Information Science, vol. 2010. Springer, 2024.
Published
2025-01-31
How to Cite
Alfiniyah, C., Windarto, Permatasari , N. A., Farman, M., Millah, N., & Ahmadin. (2025). Optimal control analysis of a tuberculosis model with drug-resistant population. Statistics, Optimization & Information Computing. https://doi.org/10.19139/soic-2310-5070-2292
Issue
Section
Research Articles
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).