Bayesian accelerated life testing models for the log-normal and gamma distributions under dual-stresses
Keywords:
Accelerated life testing, Bayes, Generalized Eyring relationship, Markov chain Monte Carlo, Reliability
Abstract
In this paper, a Bayesian approach to accelerated life testing models with two stressors is presented. Lifetimes are assumed to follow either a log-normal distribution or a gamma distribution, which have been mostly overlooked in the Bayesian literature when considering multiple stressors. The generalized Eyring relationship is used as the time transformation function, which allows for the use of one thermal stressor and one non-thermal stressor. Due to the mathematically intractable posteriors of these models, Markov chain Monte Carlo methods are utilized to obtain posterior samples on which to base inference. The models are applied to a real dataset, where model comparison metrics are calculated and estimates are provided of the model parameters, predictive reliability, and mean time to failure. The robustness of the models is also investigated in terms of the prior specification.
Published
2025-03-21
How to Cite
Smit, N. (2025). Bayesian accelerated life testing models for the log-normal and gamma distributions under dual-stresses. Statistics, Optimization & Information Computing, 13(6), 2339-2352. https://doi.org/10.19139/soic-2310-5070-2293
Issue
Section
Research Articles
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).