Economic Dispatch of Thermal Generators via Bio-Inspired Optimization Techniques

  • Cristian Patiño-Cataño Facultad de Ingenierías, Instituto Tecnológico Metropolitano, Campus Robledo, Medellín 050036, Colombia
  • Rubén Iván Bolaños Facultad de Ingenierías, Instituto Tecnológico Metropolitano, Campus Robledo, Medellín 050036, Colombia https://orcid.org/0000-0002-0910-6579
  • Jhony Andrés Guzmán-Henao Facultad de Ingenierías, Instituto Tecnológico Metropolitano, Campus Robledo, Medellín 050036, Colombia https://orcid.org/0000-0003-0909-5029
  • Luis Fernando Grisales-Noreña Grupo de Investigación en Alta Tensión-GRALTA, Universidad del Valle, Cali 760015, Colombia https://orcid.org/0000-0002-1409-9756
  • Oscar Danilo Montoya Grupo de Compatibilidad e Interferencia Electromagnética, Facultad de Ingeniería, Universidad Distrital Francisco José de Caldas, Bogotá 110231, Colombia https://orcid.org/0000-0001-6051-4925
Keywords: Economic dispatch, Metaheuristic optimization, Thermal generators, CO2 emissions, Single-bus test system

Abstract

This paper addresses the economic dispatch problem in thermal power systems using four metaheuristic optimization algorithms: Particle Swarm Optimization (PSO), Crow Search Algorithm (CSA), Salp Swarm Algorithm (SSA), and JAYA algorithm. A deterministic formulation is adopted to minimize the total generation cost over a 24-hour horizon while meeting generator operating constraints and ensuring load balance. A randomly generated dispatch strategy is also included as a baseline. Each algorithm is independently executed 100 times to evaluate robustness, repeatability, and associated CO2 emissions. Among all methods, PSO achieves the best performance, yielding the lowest total dispatch cost of $82,412.78 and the smallest relative standard deviation (0.12%), along with total CO2 emissions of 1901.65 kg. Compared to other techniques, PSO provides cost improvements of 0.20% over CSA, 0.28% over SSA, 0.94% over JAYA, and a substantial 29.23% reduction with respect to the random baseline. Moreover, all metaheuristic strategies significantly outperform the random dispatch, demonstrating their ability to generate high-quality and feasible solutions. The PSO-based dispatch strategy efficiently allocates hourly power outputs within technical constraints, introducing a controlled overgeneration margin to compensate for system losses. These results confirm the effectiveness of metaheuristic approaches in complex power system optimization tasks and establish a foundation for future work involving renewable integration, emission constraints, and uncertainty modeling.
Published
2025-09-10
How to Cite
Patiño-Cataño, C., Bolaños, R. I., Guzmán-Henao, J. A., Grisales-Noreña, L. F., & Montoya, O. D. (2025). Economic Dispatch of Thermal Generators via Bio-Inspired Optimization Techniques. Statistics, Optimization & Information Computing. https://doi.org/10.19139/soic-2310-5070-2812
Section
Research Articles