Dual Generalized Order Statistics from Gompertz-Verhulst Distribution and Characterization

  • Izhar Khan Islamic University of Madinah
Keywords: Dual generalized order statistics, reversed order statistics, lower record value, conditional expectations, truncation and characterization.

Abstract

The dual generalized order statistics is a unified scheme which contains the well known decreasingly ordered random variables such as (reversed) order statistics, lower record values and lower Pfeifer record values. In this article, characterization results on Gompertz-Verhulst distribution through the conditional expectation of dual generalized order statistics based on non-adjacent dual generalized order statistics are given. These relations are deduced for moments of reversed order statistics, order statistics and lower record values. Further a characterization result through the truncated moment is also derived.

References

M. Q. Shahbaz, M. Ahsanullah, S. H. Shahbaz and B. M. Al-Zahrani, Ordered Random Variables: Theory and Applications, Atlantis Press, 2016.

U. Kamps, A concept of Generalized Order Statistics, Teubner Stuttgart, 1995.

M. Burkschat, E. Cramer and U. Kamps, Dual generalized order statistics, Metron, vol.61, pp.13-26, 2003.

A. M.Kagan, Yu. V. Linnik and C. R. Rao, Characterization Problems in Mathematical Statistics, John Wiley & Sons, New York (English Translation, translated from the Russian text by B. Ramachandran), 1973.

I. I. Kotlarski, On a characterization of some probability distributions by conditional expectations, Sankhya, vol.34, no. 4 pp. 461-466 ,1972.

S. Talwalker, A note on characterization by conditional expectation, Metrika, vol.24, pp.129-136, 1977.

J. Galambos and S. Kotz, Characterization of probability distributions. A unified approach with an emphasis of exponential and related models, Lecture Notes in Mathematics, 675, Springer, Berlin, Germany, 1978.

R. C. Gupta and M. Ahsanullah, Some characterization results based on the conditional expectation of a function of non- adjacent order statistic (Record value), Ann. Inst. Statist. Math., vol.56, no.4 pp.721-732, 2004.

P. Zora, R. M. Ruiz and J. Marin, A characterization based on conditional expectation, Comm. Statist. Theory Methods, vol.16, pp. 3127-3135, 1990.

R. U. Khan, M. A. Khan and M. A. R. Khan, Relations for moments of generalized record values from additive Weibull distribution and associated inference, Stat., Optim. Inf. Comput., vol. 5, pp.127-136, 2017.

N. Gupta and Z. Anwar, Relations for single and product moments of odd generalized exponential- Pareto distribution and characterization, Stat., Optim. Inf. Comput., vol. 7, pp.160-170, 2019.

M. Ahsanullah, A characterization of the uniform distribution by dual generalized order statistics, Comm. Stat. Theory Methods, vol.33, pp.2921-2928, 2004.

M. Ahsanullah, On lower generalized order statistics and a characterization of the power function distribution, Stat. Methods, vol.7, no.1 pp.16-28, 2005.

A. K. Mbah and M. Ahsanullah, Some characterization of the power function distribution based on lower generalized order statistics, Pak. J. Stat., vol.23, pp.139-146, 2007.

A. H. Khan, M. Faizan and Z. Haque, Characterization of probability distributions by conditional variance of generalized order statistics and dual generalized order statistics, J. Statist. Theory Appl., vol.9, pp.375-385, 2010.

A. H. Khan, Z. Anwar and S. Chishti, Characterization of continuous distributions through conditional expectation of functions of dual generalized order statistics, Pakistan. J. Stat., vol. 26, pp.615-628, 2010.

M. Faizan and M. I. Khan, Characterization of some probability distributions by conditional expectations of dual generalized order statistics, J. Stat. Sci., vol.3, no.2 pp.143-150, 2011.

M. Tavanagar, Power function distribution characterized by dual generalized order statistics, J. Iran. Stat. Soci., vol.10, no.1 pp.13-27, 2011.

M. I. Khan and M. Faizan, Some characterization results based on conditional expectation of function of dual generalized order statistics, Pak. J. Stat. Oper. Res., vol.8, no.4 pp.789-799, 2012.

R. U. Khan and M. A. Khan, Dual generalized order statistics from family of J-shaped distribution and characterization, Journal of King Saud University- Science, vol. 27, pp. 285-291, 2015.

M. I. Khan and M. A. R. Khan, Characterization of Burr- Type X distribution based on conditional expectations of dual generalized order statistics, Int. J. Comp. Theo. Stat., vol. 4, no.1 pp.37-43, 2017.

B. Gompertz, On the nature of the function expressive of the law of human mortality and on a new mode of determining the value of life contingencies, Philosophical Transactions of the Royal Society London, vol.115, pp. 513-585, 1825.

P. F. Verhulst, Recherches mathematiques sur la loi-d-accroissement de la population. Nouvelles Memoires de l Academie Royale des Sciences et Belles- Lettres de Bruxellesi. (i,e, Memories, series 2), vol.18, pp. 38, 1845.

P. F.Verhulst, Deuxieme memoire sur la loi-d-accroissement de la population. Memoires de l Academie Royale des Science, des Lettres et des Beaux- Arts de Belgique, Series 2, vol. 20, pp. 32, 1847.

P. F.Verhulst, Notice sur la loi la population suit dans son accroissement. Correspondence mathematique et physique, publiee L. A. J. Quetelet, vol.10, pp.113-121, 1838.

M. Ahsanullah, M. Shakil, and B. M. Golam Kibria, A note on a characterization of Gompertz- Verhulst distribution, J. Statist. Theory Appl., vol.13, no.1 pp.17-26, 2014.

M. Ahsanullah, M. Shakil and B. M. Golam Kibria, Characterization of continuous distributions by truncated moment, J. Modern Appl. Satist. Methods, vol.15, no.1 pp.316-331, 2016.

Published
2020-02-27
How to Cite
Khan, I. (2020). Dual Generalized Order Statistics from Gompertz-Verhulst Distribution and Characterization. Statistics, Optimization & Information Computing, 8(4), 801-809. https://doi.org/10.19139/soic-2310-5070-652
Section
Research Articles