Minimaxity and Limits of Risks Ratios of Shrinkage Estimators of a Multivariate Normal Mean in the Bayesian Case

  • Abdenour Hamdaoui University of Sciences and Technologies Mohamed Boudiaf, Oran (USTO). Department of Mathematics.
  • Abdelkader Benkhaled Department of Biology, Mascara University, Algeria
  • Nadia Mezouar Faculty of Economics and Commercial Sciences, Mascara University
Keywords: Bayes estimator, James-Stein estimator, Modified Bayes estimator, Multivariate Gaussian random variable, Quadratic risk, Shrinkage estimator.

Abstract

In this article, we consider two forms of shrinkage estimators of a multivariate normal mean with unknown variance. We take the prior law as a normal multivariate distribution and we construct a Modified Bayes estimator and an Empirical Modified Bayes estimator. We are interested instudying the minimaxity and the behavior of risks ratios of these estimators to the maximum likelihood estimator, when the dimension of the parameters space and the sample size tend to infinity.

Author Biography

Abdenour Hamdaoui, University of Sciences and Technologies Mohamed Boudiaf, Oran (USTO). Department of Mathematics.
Doctorat in Mathematics (PhD) option of Probability and statistics at the Department of Mathematics, University of Tlemcen, Algeria.Senior lecturer at the Department of Mathematics, University of Science and Technology of Oran Mohamed Boudiaf (USTO-MB), Oran, Algeria.

References

A.J. Baranchik, Multiple regression and estimation of the mean of a multivariate normal distribution, Stanford Univ. Technical Report. 51 (1964).

D. Benmansour and A. Hamdaoui, Limit of the Ratio of Risks of James-Stein Estimators with Unknown Variance, Far East Journal of Theorical Statistics. 36 (2011) 1, 31-53.

D. Benmansour and T. Mourid, Etude d'une classe d'estimateurs avec rétrécisseur de la moyenne d'une loi gaussienne, Annales de l'ISUP. 51 (2007), Fascicule 1-2.

A.C. Brandwein and W.E. Strawderman, Stein Estimation for Spherically Symmetric Distributions : Recent Developments, Statistical Science. 27 (2012) 1, 11-23.

G. Casella and J.T. Hwang, Limit expressions for the risk of James-Stein estimators, The canadian Journal of Statistics. 10 (1982) 4, 305-309.

D. Fourdrinier, I. Ouassou and W.E. Strawderman,

Estimation of a mean vector under quartic loss, Journal of Statistical Planning and Inference. 138 (2008), 3841-3857.

A. Hamdaoui and D. Benmansour, Asymptotic properties of risks ratios of shrinkage estimators, Hacettepe Journal of Mathematics and Statistics. 44 (2015) 5, 1181-1195.

A. Hamdaoui and N. Mezouar, Risks Ratios of shrinkage estimators for the multivariate normal mean, Journal of Mathematics and Statistics, Science Publication. 13 (2017) 2, 77-87.

A. Hamdaoui, N. Mezouar, D. Benmansour and D. Bouguenna, Examples of Shrinkage Estimators of the Mean, Dominating the Maximum Likelihood Estimator in Larges Dimension, IOSR Journal of Mathematics. 12 (2016) 3, 14-28.

W. James and C. Stein, Estimation of quadratique loss, Proc 4th Berkeley Symp, Math. Statist.Prob, Univ of California Press, Berkeley. 1 (1961), 361-379.

T. F. Li and W. H. Kio, Generalized James-Stein Estimators, Commun Statist.Thor.Math. 11 (1982) 20, 11(20), 2249-2257.

D.V Lindley and A.F.M. Smith, Bayes estimates for the linear model (with discussion), J. Roy. Statist. Soc. 34 (1972), 1-41.

Y. Maruyama, l_{p}-norm based James-Stein estimation with minimaxity and sparsity, Statistics Theory (math.ST) arXiv: 1402.0302, (2014).

C. Stein, Inadmissibilty of the usual estimator for the mean of a multivariate normal distribution, Proc 3th Berkeley Symp, Math. Statist. Prob. Univ. of California Press, Berkeley. 1 (1956), 197-206.

C. Stein, Estimation of the mean of a multivariate normal distribution, Ann. Statis. 9 (1981) 6, 1135-1151.

S. Zinodiny, S. Rezaei and S. Nadarajah, Minimax estimation of the mean of the multivariate normal distribution, Communication in Statistics- Theory and Methods. DOI: 10.1080/03610926.2015.1019146 (2016).

Published
2020-02-17
How to Cite
Hamdaoui, A., Benkhaled , A., & Mezouar, N. (2020). Minimaxity and Limits of Risks Ratios of Shrinkage Estimators of a Multivariate Normal Mean in the Bayesian Case. Statistics, Optimization & Information Computing, 8(2), 507-520. https://doi.org/10.19139/soic-2310-5070-735
Section
Research Articles