A Different Approach for Choosing a Threshold in Peaks over Threshold

  • Andrehette Verster University of the Free State
  • Lizanne Raubenheimer North-West University
Keywords: Extreme Value Index, Jeffreys prior, Peaks over Threshold, Topp-Leone Pareto distribution

Abstract

In Extreme Value methodology the choice of threshold plays an important role in efficient modelling of observations exceeding the threshold. The threshold must be chosen high enough to ensure an unbiased extreme value index but choosing the threshold too high results in uncontrolled variances. This paper investigates a generalized model that can assist in the choice of optimal threshold values in the γ positive domain. A Bayesian approach is considered by deriving a posterior distribution for the unknown generalized parameter. Using the properties of the posterior distribution allows for a method to choose an optimal threshold without visual inspection.

References

Beirlant, J., Dierckx, G., Goegebeur, Y., & Matthys, G. (1999). Tail index estimation and an exponential regression model. Extremes, 2(2), 177 – 200.

Beirlant, J., Goegebeur, Y., Segers, J., & Teugels, J. (2004). Statistics of Extremes: Theory and Applications. Chichester: John Wiley and Sons.

Beirlant, J., Joossens, E., & Segers, J. (2009). Second-order refined peaks-over-threshold modelling for heavytailed distribution. Journal of Statistical Planning and Inference, 139, 2800 – 2815.

Beirlant, J., Maribe, G., & Verster, A. (2019). Using shrinkage estimators to reduce bias and mse in estimation of heavy tails. REVSTAT-Statistical Journal, 17(1), 91 – 108.

Caeiro, F. & Gomes, M. I. (2011). Asymptotic comparison at optimal levels of reduced-bias extreme value index estimators. Statistica Neerlandica, 65(4), 462 – 488.

Coles, S. G. (2001). An introduction to statistical modeling of extreme values. London: Springer.

de Haan, L. & Ferreira, A. (2005). Extreme Value Theory: An Introduction. New York: Springer.

Feuerverger, A. & Hall, P. (1999). Estimating a tail exponent by modelling departure from a Pareto distribution. The Annals of Statistics, 27(2), 760 – 781.

Gomes, M. I., Martins, M. J., & Neves, M. (2000). Alternatives to a semiparametric estimator of parameters of rare events - the jackknife methodology. Extremes, 3(3), 207 – 229.

Ouadjed, H. (2018). POT approach for estimation of extreme risk measures of EUR/USD returns. Statistics, Optimization and Information Computing, 6(2), 240 – 247.

Pickands, J. (1975). Statistical inference using extreme order statistics. Annals of Statistics, 3(1), 119 – 131.

Rezaei, S., Sadr, B. B., Alizadeh, M., & Nadarajah, S. (2017). Topp-Leone generated family of distributions: Properties and applications. Communications in Statistics - Theory and Methods, 46(6), 2893 – 2909.

Topp, C. W. & Leone, F. C. (1955). A family of J-shaped frequency functions. Journal of the American Statistical Association, 50, 209 – 219.

Published
2020-10-30
How to Cite
Verster, A., & Raubenheimer, L. (2020). A Different Approach for Choosing a Threshold in Peaks over Threshold. Statistics, Optimization & Information Computing, 9(4), 838-848. https://doi.org/10.19139/soic-2310-5070-976
Section
Research Articles