Minimax Estimation of Solutions of the First Order Linear Hyperbolic Systems with Uncertain Data

  • Olena A. Kapustian Taras Shevchenko National University of Kyiv, Ukraine
  • Oleksandr G. Nakonechnyi Taras Shevchenko National University of Kyiv, Ukraine
  • Yurii K. Podlipenko Taras Shevchenko National University of Kyiv, Ukraine
Keywords: Minimax estimation, first order hyperbolic system, observation, uncertain data

Abstract

In this paper, we focus on optimal estimation of solutions of the Cauchy problem for the first order linear hyperbolic equation systems (or, more generally, estimation of values of some functionals on their solutions) under incomplete data.

Author Biographies

Olena A. Kapustian, Taras Shevchenko National University of Kyiv, Ukraine
Faculty of Computer Science and Cybernetics,Deputy Dean
Oleksandr G. Nakonechnyi, Taras Shevchenko National University of Kyiv, Ukraine
Faculty of Computer Science and Cybernetics,Head of Department of System Analysis and Decision Making Theory, Professor
Yurii K. Podlipenko, Taras Shevchenko National University of Kyiv, Ukraine
Faculty of Computer Science and Cybernetics,Leading Researcher

References

J. Rauch, Hyperbolic Partial Differential Equations and Geometric Optics. //http://www.math.lsa.umich.edu/ rauch/nlgonotes.pdf

H. Gajewski, K. Gr¨ oger, K. Zacharias, Nichtlineare Operator gleichungen und Operatordifferentialgleichungen, Akademie-Verlag; Berlin, 1974.

S. Mizohata, The theory of partial differential equations, Cambridge University Press, 1973.

J.L. Lions, Optimal control of systems described by partial differential equations, Springer- Verlag, New York, Heidelberg, Berlin, 1971.

Y. Podlipenko, Y. Shestopalov, Mixed Variational Approach to Finding Guaranteed Estimates for Solutions and Right-Hand Sides of the Second-Order Linear Elliptic Equations under Incomplete Data, Minimax Theory and its Applications, vol. 1, no. 2, pp. 197-244, 2016.

O.G. Nakonechnyi, Minimax State Estimates for Abstract Neumann Problems, Minimax Theory and its Applications, vol. 3, no. 1,pp. 1-21, 2018.

M. Luz, M. Moklyachuk, Minimax-robust filtering problem for stochastic sequences with stationary increments and cointegrated sequences. Statistics, Optimization and Information Computing, vol.2, no 3, pp. 176-199, 2014.

M. Luz, M. Moklyachuk, Minimax interpolation problem for random processes with stationary increments. Statistics, Optimization and Information Computing, vol. 3, no 1, pp. 30-41, 2015.

M. Moklyachuk, Minimax-Robust Estimation Problems for Stationary Stochastic Sequences. Statistics, Optmization and Information Computing, vol. 3, no. 4, pp. 348-419, 2015.

O. A. Kapustian, O. G. Nakonechnyi, The Minimax Problems of Pointwise Observation for a Parabolic Boundary-Value Problem,Journal of Automation and Information Sciences, vol. 34, no. 5, pp.52-67, 2002.

Minimax Theory and its Applications

V. O. Kapustyan, O. A. Kapustian, Y. K. Podlipenko, Minimax estimates of functionals from time-periodic solutions of Newmann boundary-value problems for parabolic equations. (Ukrainian), Bulletin of the University of Kiev. Series: Physics and Mathematics,Issue 2, pp. 220-232, 2005.

Yu. Podlipenko, V. Golovach The minimax approach to the estimation problem of parameters of the linearized Navier-Stokes equation under incomplete data. (in Russian) Journal of Numerical and Applied Mathemayics, No. 3 (99), pp. 70-88, 2009.

V. Hutson, J.S. Pym, M.J. Cloud, Applications of functional analysis and operator theory, 2ed., Elsevier, 2005.

Published
2019-12-01
How to Cite
Kapustian, O. A., Nakonechnyi, O. G., & Podlipenko, Y. K. (2019). Minimax Estimation of Solutions of the First Order Linear Hyperbolic Systems with Uncertain Data. Statistics, Optimization & Information Computing, 7(4), 695-708. https://doi.org/10.19139/soic-2310-5070-457
Section
Research Articles