Inference on the Parameters and Reliability Characteristics of Generalized Inverted Scale Family of Distributions based on Records

  • Ajit Chaturvedi
  • Ananya Malhotra
Keywords: generalized inverted scale family of distributions, point estimation, interval estimation, records, simulation studies

Abstract

A generalized inverted scale family of distributions is considered. Two measures of reliability are discussed, namely    and .  Point and interval estimation procedures are developed for the parameters,  and  based on records. Two types of point estimators are developed - uniformly minimum variance unbiased estimators (UMVUES) and maximum likelihood estimators (MLES). A comparative study of different methods of estimation is done through simulation studies and asymptotic confidence intervals of the parameters based on MLE and log(MLE) are constructed. Testing procedures are also developed for the parametric functions of the distribution and a real life example has been analysed for illustrative purposes.

References

A.M. Abouammoh, and A.M. Alshingiti, Reliability estimation of Generalized inverted exponential distribution, J. Statist.Comput.

Simul, vol. 79, no. 11, pp. 1301 – 1315, 2009.

B.C. Arnold, N. Balakrishan, and H. N. Nagaraja, A First Course in Order Statistics, John Wiley & Sons, New York, 1992.

M. Arashi, and M. Emadi, Evidential inference based on record data and inter-record times, Stat.Papers, vol. 49, no. 2, pp. 291 –

, 2008.

A.M. Awad, and M.K. Gharraf, Estimation of P(Y < X) in the Burr case: A comparative study, Commun. Statist. - Simul., vol. 15, no. 2, pp. 389 – 403, 1986.

N.Balakrishan,M.Ahsanullah,and P.S.Chan, On the logistic record values and associated inference, Journal of Applied Statistical Science, vol. 2, pp. 233 – 248, 1995 .

D.J. Bartholomew, A problem in life testing, Jour. Amer. Statist. Assoc., vol. 52, pp. 350 – 355, 1957.

D. J. Bartholomew, The sampling distribution of an estimate arising in life testing, Technometrics, vol. 5, pp. 361 – 374, 1963.

A. P. Basu, Estimates of reliability for some distributions useful in life testing, Technometrics, vol. 6, pp. 215 – 219, 1964.

R. A. Belaghi, M. Arashi, and S. M. M. Tabatabaey,

On the construction of preliminary test estimator based on record

values for the Burr XII model, Communications in Statistics - Theory and Methods, vol. 44, no. 1, pp. 1 – 23, 2015, DOI:10.1080/03610926.2012.733473

K. N. Chandler, The distribution and frequency of record values, Journal of the Royal Statistical Society, Series B, vol. 14, pp. 220

– 228, 1952.

A. Chao, On comparing estimators of Pr{X > Y } in the exponential case, IEEE Trans. Reliability, vol. R-26, pp. 389 – 392,

A. Chaturvedi, and T. Kumari, Estimation and testing procedures for the reliability functions of a family of lifetime distributions,

interstat.statjournals.net/ YEAR/ 2015/ abstracts/ 1306001.php, 2015.

A. Chaturvedi, and A. Malhotra, Estimation and testing procedures for the reliability functions of a family of lifetime distributions based on records, Int. J. Syst. Assur. Eng. Manag., DOI:10.1007/s13198-016-0531-2, 2016.

A. Chaturvedi, and A. Malhotra, Inference on the Parameters and Reliability Characteristics of three parameter Burr Distribution

based on Records, Appl. Math. Inf. Scien., 11(3), 837-849, 2017.

A. Chaturvedi, and A. Pathak, Estimation of the reliability functions for exponentiated Weibull distribution, J. Stat. & Appl, vol. 7, pp. 1 – 8, 2012.

A.Chaturvedi,and A.Pathak, Bayesian estimation

procedures for three parameter exponentiated Weibull distribution under entropy loss function and type II censoring, interstat.statjournals.net/YEAR/2013/abstracts/1306001.php, 2013.

A. Chaturvedi, and A. Pathak, Estimation of the reliability function for four-parameter exponentiated generalized lomax

distribution, IJSER, Vol. 5, no. 1, pp. 1171 – 1180, 2014.

A. Chaturvedi, and U. Rani, Estimation procedures for a family of density functions representing various life-testing models,

Metrika, vol. 46, pp. 213 – 219, 1997.

A. Chaturvedi, and U. Rani, Classical and Bayesian reliability estimation of the generalized Maxwell failure distribution, Jour.

Statist. Res., vol. 32, pp. 113 – 120, 1998.

A. Chaturvedi, and K. G. Singh, Bayesian estimation procedures for a family of lifetime distributions under squared-error and

entropy losses, Metron, vol. 64, no. 2, pp. 179 – 198, 2006.

A. Chaturvedi, and K. G. Singh, A family of lifetime distributions and related estimation and testing procedures for the reliability

function, Jour. Appl. Statist. Sci., vol. 16, no. 2, pp. 35 – 50, 2008.

A. Chaturvedi, and A. Surinder, Further remarks on estimating the reliability function of exponential distribution under type I and

type II censorings, Brazilian Jour. Prob. Statist., vol. 13, pp. 29 – 39, 1999.

A. Chaturvedi, and S. K. Tomer, Classical and Bayesian reliability estimation of the negative binomial distribution, Jour. Applied

Statist Sci., vol. 11, pp. 33 – 43, 2002.

A. Chaturvedi, and S. K. Tomer, UMVU estimation of the reliability function of the generalized life distributions, Statist. Papers,vol. 44, no. 3, pp. 301 – 313, 2003.

Chaturvedi, A., Vyas, S., Estimation and testing procedures for the reliability functions of exponentiated distributions under

censorings, Statistica, vol. 77, no. 1, 13-31, 2017.

K. Constantine, M. Karson, and S. K. Tse, Estimation of P(Y < X) in the gamma case, Commun. Statist. - Simul., vol. 15, no. 2,

pp. 365 – 388, 1986.

S. Dey, Inverted exponential distribution as a life distribution model from a Bayesian viewpoint, Data Sci. J., vol. 6, pp. 107 – 113,

A. Rdelyi (Ed), Tables of Integral Transforms, McGraw-Hill, 1, 1954.

N. Glick, Breaking records and breaking boards, American Mathematical Monthly, vol. 85, pp. 543 – 551, 1978.

R. D. Gupta, and D. Kundu, Generalized exponential distribution, Aust. N. Z. J. Statist, vol. 41, no. 2, pp. 173 – 183, 1999.

R. D. Gupta, and D. Kundu, Exponentiated exponential family: an alternative to gamma and Weibull distributions, Biom. J.,

vol. 43, pp. 117 – 130, 2001a. DOI:10.1002/1521-4036(200102)43:1<117::AID-BIMJ117>3.0.CO;2-R

R. D. Gupta, and D. Kundu, Generalized exponential distribution: Different methods of estimations, J. Statist. Comput. Simul,

vol. 69, no. 4, pp. 315 – 338, 2001b.

A. R. Habibi, N. R. Arghami, and J. Ahmadi, Statistical evidence in experiments and in record values, Commun. Stat. Theo. Meth.

vol. 35, no. 11, pp. 1971 – 1983, 2006.

N. L. Johnson, Letter to the editor, Technometrics, vol. 17, pp. 393, 1975.

G. D. Kelly, J. A. Kelly, ans W. R. Schucany, Efficient estimation of P(Y < X) in the exponential case, Technometrics, vol. 18,

pp. 359 – 360, 1976.

H.Krishna,andK.Kumar, Reliability estimation in generalized inverted exponential distribution with progressively typeII censored

sample, J. Statist. Comput. Simul, vol. 83, no. , pp. 1007 – 1019, 2012.

J. F. Lawless, Statistical models and methods for lifetime data, John Wiley and Sons, New York, 1982.

E. L. Lehmann, Testing Statistical Hypotheses, John Wiley and Sons, New York, 1959.

C. T. Lin, B. S. Duran, and T. O. Lewis, Inverted gamma as life distribution, Microelectron Reliab, vol. 29, no. 4, pp. 619 – 626,

W. Q. Meeker, and L. A. Escober, Statistical Methods for Reliability Data, John Wiley and Sons, New York, 1998.

H. N. Nagaraja, Record values and related statistics - A review, Communications in Statistics - Theory and Methods, vol. 17,

pp. 2223 – 2238, 1988a.

H. N. Nagaraja, Some characterizations of continuous distributions based on regressions of adjacent order statistics and record values, Sankhya, Series A, vol. 50, pp. 70 – 73, 1988b.

K. G. Potdar, and D. T. Shirke, Inference for the scale parameter of lifetime distribution of k-unit parallel system based on

progressively censored data, J. Statist. Comput. Simul., DOI: 10.1080/00949655.2012.700314, 2012.

K. G. Potdar, and D. T. Shirke, Inference for the parameters of generalized inverted family of distributions, ProbStat, vol. 6, pp. 18

– 28, 2013.

E. L. Pugh, The best estimate of reliability in the exponential case, Operations Research, vol. 11, pp. 57 – 61, 1963.

M. Razmkhah, and J. Ahmadi, Comparing two sampling schemes based on entropy of record statistics, Stat. Papers, vol. 53, pp. 95

– 106, 2011.

V. K. Rohtagi, E. Saleh, and A. K. Md. Ehsanes, An Introduction to Probability and Statistics, Second Edition. John Wiley & Sons,

U.K., 2012.

Y. S. Sathe, ans S. P. Shah, On estimating P(X < Y ) for the exponential distribution, Commun. Statist. - Theor. Meth., vol. A10,

pp. 39 – 47, 1981.

H. Tong, A note on the estimation of P(Y < X) in the exponential case, Technometrics, vol. 16, pp. 625, 1974.

H. Tong, Letter to the editor, Technometrics, vol. 17, pp. 393, 1975.

R. K. Tyagi, and S. K. Bhattacharya, A note on the MVU estimation of reliability for the Maxwell failure distribution, Estadistica,vol. 41, pp. 73 – 79, 1989.

R. I. Watson, Research design and methodology in evaluating the results of psychotherapy, J. Clin. Psychol., vol. 8, pp. 29 – 33,

DOI:10.1002/1097-4679(195201)8:1<29::AID-JCLP2270080107>3.0.CO;2-O

Published
2018-06-24
How to Cite
Chaturvedi, A., & Malhotra, A. (2018). Inference on the Parameters and Reliability Characteristics of Generalized Inverted Scale Family of Distributions based on Records. Statistics, Optimization & Information Computing, 6(2), 189-207. https://doi.org/10.19139/soic.v6i2.304
Section
Research Articles