Optimization on the distribution of population densities and the arrangement of urban activities

  • Savin Treanta University Politehnica of Bucharest, Faculty of Applied Sciences, Department of Applied Mathematics
Keywords: Weighted entropy, Utility distribution, Probability distribution, Efficiency conditions

Abstract

In this paper, an approximation on the distribution of population densities and the arrangement of urban activities, over a set of n  locations, is derived by using the classical multiobjective optimization theory and Shannon entropy.

References

A. Anas, Discrete choice theory, information theory and the multinomial logit and gravity models, Transp. Res. B. 17(1983), no. 1,13-23.

M. Arana-Jiménez, G. Ruiz-Garzón, R. Osuna-Gómez and B. Hernández-Jiménez, Duality and a characterization of pseudoinvexity for Pareto and weak Pareto solutions in nondifferentiable multiobjective programming, J. Optim. Theory Appl. 156(2013), no. 2, 266-277.

M. Batty, Spatial entropy, Geograph. Anal. 6(1974), no. 1, 1-31.

M. Batty, Cities as complex systems: Scaling, interactions, networks, dynamics and urban morphologies. In R. Meyers (Ed.). Encyclopedia of complexity and systems science (Vol. 1, pp. 1041-1071). Berlin, DE: Springer, 2009.

M. Batty, R. Morphet, P. Masucci and K. Stanilov, Entropy, complexity, and spatial information, J. Geogr. Syst. 16(2014), no. 4, 363-385.

M. Belis¸ and S. Guias¸u, A Quantitative-Qualitative Measure of Information in Cybernetic Systems, IEEE Transactions on Information Theory 14(1968), no. 4, 593-594.

R. Clausius, Ueber verschiedene für die Anwendung bequeme formen der Hauptgleichungen der mechanischen Wärmetheorie, Ann. Phys. Chem. 125(1865), 53-400.

G.T. Halliwell and P.R. Mercer, A Refinement of an Inequality from Information Theory, Journal of Inequalities in Pure and Applied Mathematics 5(2003), no. 3, 29-31.

J.N. Kapur, On the Concept of ”Useful” Information, J. Org. Behav. Stat. 2(1985), no. 3-4, 147-162.

J.N. Kapur, New Qualitative-Quantitative Measures of Information, Nat. Acad. Sci. Lett. 9(1986), no. 2, 51-54.

F. Liese and I. Vajda, On divergences and informations in statistics and information theory, IEEE Transactions on Information Theory 52(2006), no. 10, 4394-4412.

G. Longo, Qualitative-Quantitative Measures of Information, New York, Springer-Verlag, 1972.

V. Preda, The Student distribution and the principle of maximum entropy, Ann. Inst. Statist. Math. A 34(1982), no. 1, 335-338.

C.E. Shannon, A Mathematical Theory of Communication, Bell. Syst. Tech. Jour., 2(1948), 623-659.

A. Srivastava, Some New Bounds of Weighted Entropy Measures, Cybernetics and Information Technologies 11(2011), no. 3, 60-65.

S. Treanta and C. Udriste, On efficiency conditions for multiobjective variational problems involving higher order derivatives, Proceedings of the 15th International Conference on Automatic Control, Modelling & Simulation (ACMOS’13), 157-164, 2013.

S. Treanta, Multiobjective fractional variational problem on higher-order jet bundles, Commun. Math. Stat. 4(2016), no. 3, 323-340.

R.U. Verma, Mathematical programming based on sufficient optimality conditions and higher order exponential type generalized invexities, Stat., Optim. Inf. Comput. 3(2015), no. 3, 276-293.

A.G. Wilson, Entropy in urban and regional modelling, Pion Press, London, 1970.

P.L. Yu, Multi-Criteria Decision Making: Concepts, Techniques, and Extensions, Plenum Press, New York, 1985.

Published
2018-06-24
How to Cite
Treanta, S. (2018). Optimization on the distribution of population densities and the arrangement of urban activities. Statistics, Optimization & Information Computing, 6(2), 208-218. https://doi.org/10.19139/soic.v6i2.348
Section
Research Articles