POT approach for estimation of extreme risk measures of EUR/USD returns

  • Ouadjed Hakim Univ Mascara
Keywords: Theory of extreme values, tail index estimation, extremal index.

Abstract

Leadbeter et al. (M.R.,G.Leadbetter, G.Lindgren,and H.Rootzen, Extremes and Related Properties of Random Sequences and Processes, Springer Series in Statistics. Springer-Verlag: New York, 1983.) have generalized the extreme value theory of i.i.d. in the case of the stationary process, where it have defined an extremal index $\theta\in]0,1[$ for measuring the degree of dependence at the extremes, this parameter measures how the extremes cluster together and $1/\theta$ is interpreted as the average size of these clusters. Using this parameter and the Peak Over Threshold method which involves the Generalized Pareto Distribution we estimate in this work the extreme quantile and the conditional tail expectation for EUR/USD returns.

Author Biography

Ouadjed Hakim, Univ Mascara
Univ Mascara 

References

P. Artzner, F. Delbaen, J. M. Eber, and D. Heath, Coherent Measures of Risk, Mathematical Finance, vol. 9, pp. 203–228, 1999.

A. A. Balkema, and L. De. Haan, Residual life time at great age, Annals of Probability, vol. 2, pp. 792–804, 1974.

S. Coles, An Introduction to Statistical Modeling of Extreme Values, Springer Series in Statistics. Springer-Verlag: London, 2001.

P. Embrechts, C. Kluppelberg, and T. Mikosch, Modelling Extremal Events for Insurance and Finance, Springer, Berlin, 1997.

R. A Fisher, and L.H.C. Tippett, Limiting Forms of the Frequency Distribution of the Largest or Smallest Member of a Sample, Proceedings of the Cambridge Philosophical Society, vol. 2, pp. 180– 190, 1928.

C. A. T. Ferro, and J. Segers, Inference for Clusters of Extreme Values, Journal of the Royal Statistical Society, Series B, vol.65, no.2, pp. 545-556, 2003.

M. R., G. Leadbetter, G. Lindgren, and H. Rootzen, Extremes and Related Properties of Random Sequences and Processes, Springer Series in Statistics. Springer-Verlag: New York, 1983.

S. T. Rachev, S. Stoyanov, and F. J Fabozzi, Advanced Stochastic Models, Risk Assessment, and Portfolio Optimization: The Ideal Risk, Uncertainty, and Performance Measures, New Jersey: John Wiley & Sons., 2007.

R. L Smith, and I. Weissman, Estimating the extremal index, Journal of the Royal Statistical Society, Series B, vol. 56, pp. 515–528, 1994.

M. Süveges, Likelihood estimation of the extremal index, Extremes, vol. 10, pp. 41–55, 2007.

I. Weissman, and S. Y. Novak, On blocks and runs estimators of the extremal index, J. Statist. Plann. Inference, vol. 66, pp. 281–288, 1998.

Published
2018-06-24
How to Cite
Hakim, O. (2018). POT approach for estimation of extreme risk measures of EUR/USD returns. Statistics, Optimization & Information Computing, 6(2), 240-247. https://doi.org/10.19139/soic.v6i2.395
Section
Research Articles