The parameter estimation of the multivariate matrix regression models

  • Zerong Lin School of Mathematics and Physics Suzhou University of Science and Technology,Suzhou, China
  • Lingling He School of Mathematics and Physics Suzhou University of Science and Technology,Suzhou, China
  • Tian Wu School of Mathematics and Physics Suzhou University of Science and Technology,Suzhou, China
  • Changqing Xu School of Mathematics and Physics Suzhou University of Science and Technology,Suzhou, China
Keywords: Multivariate matrix model, high order derivative, likelihood estimation, vectorization, parameter matrix

Abstract

In this paper, we consider the parameter matrix estimation problem of the multivariate matrix regression models. We approximate the parameter matrix $B$ and the covariance matrix by using the method of the maximum likelihood estimation, together with the Kronecker product of matrices, vectorization of matrices and matrix derivatives.

Author Biography

Changqing Xu, School of Mathematics and Physics Suzhou University of Science and Technology,Suzhou, China
Professor of MathematicsResearch area: Statistical and multivariate and multilinear data analysis    

References

S.G. Baker, Regression analysis of grouped survival data with incomplete covariates: nonignorable missing-data and censoring mechanisms, Biometrics, vol. 50, pp. 821–826, 1994.

R. E. Bargmann, Matrices and determinants. In: CRC Handbook of Tables for Mathematics, Ed. S.M. Selby. Chemical Rubber Co, Cleveland, pp. 146–148, 1964.

P. M. Bentler, and S. Y. Lee, Some extensions of matrix calculus. General Systems vol. 20, pp. 145–150,1975.

M. Bilodeau, and D. Brenner, Theory of Multivariate Statistics, Springer., New York, 1961.

D.B. Cox, Regression models and life-tables, J. Roy. Statist. Soc. B, vol. 34, pp. 187–220,1972.

A.P. Dempster, N.M. Laird, D.B. Rubin Maximum likelihood from incomplete data via the EM algorithm, J. Roy. Statist. Soc. B, vol. 39, pp. 1–38,1977.

K. A. Bollen, and P. J. Curran, Latent curve models: A structure equation perspective, Wiley, NJ, 2006.

A. S. Bryk, and S. W. Raudenbush, Application of hierarchical linear models to assessing change, Psychological Bulletin., vol. 101, pp. 147–158,1987.

P. S. Dwyer, and M. S. Macphail, Symbolic Matrix Derivatives, Ann. Math. Statist. vol.19, pp. 517–534,1948.

R. D. Cook, and X. Zhang, Simultaneous envelopes for multivariate linear regression, Technometrics, vol. 57, pp. 11–25, 2015.

T. Hastie, R. Tibshirani, and J. Friedman, The elements of Statistical Learning, 2nd ed., Springe, New York, 2009.

J. D. Kalbfleisch and R. L. Prentice, The Statistical Analysis of Failure Time Data. Wiley, New York,1980.

T. Kollo, and D. Rosen, Advanced Multivariate Statistics with Matrices, Springer., New York, 2005.

E. C. MacRae, Matrix derivatives with an application to an adaptive linear decision problem, Ann. Statist. vol. 2, pp. 337–346,1974.

R. P. McDonald, and H. Swaminathan, A simple matrix calculus with applications to multivariate analysis, General Systems, vol.18, pp. 37–54,1973.

K. E. Muller, and P. W. Stewart, Linear Model Theory: Univariate, Multivariate, and Mixed Models, Wiley Blackwell, 2012.

H. Neudecker, Some theorems on matrix differentiations with special reference to Kronecker matrix products, J. Amer. Statist. Assoc, vol.64, pp. 953–963,1969.

D. S. Tracy, and P. S. Dwyer, Multivariate maxima and minima with matrix derivates, J. Amer. Statist. Assoc., vol. 64, pp. 1576–1594, 1969.

S. W. Raudenbush, and A. S. Bryk, Hierarchical linear models: Applications and data analysis methods 2, Sage Publications, Thousand Oaks, CA, 2002.

J. D. Singer, Using SAS Proc Mixed to fit multilevel models, hierarchical models, and individual growth models, Journal of Educational and Behavioral Statistics, vol. 23, pp. 323–355,1989.

Published
2018-06-24
How to Cite
Lin, Z., He, L., Wu, T., & Xu, C. (2018). The parameter estimation of the multivariate matrix regression models. Statistics, Optimization & Information Computing, 6(2), 286-291. https://doi.org/10.19139/soic.v6i2.361
Section
Research Articles